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Abstract. We study 20 different implementation methodologies for
each of 11 different choices of parameters of binomial trees and in-
vestigate the speed of convergence for pricing American put options
numerically. We conclude that the most effective methods involve us-
ing truncation, Richardson extrapolation and sometimes smoothing. We
do not recommend use of a European as a control. The most effective
trees are the Tian third order moment matching tree and a new tree
designed to minimize oscillations.

1. Introduction

There are three main approaches to developing the prices of deriva-
tive contracts: Monte Carlo, PDE methods and tree methods. The last are
conceptually appealing in that they have a natural financial interpretation,
are easy to explain and converge in the limit to the Black–Scholes value.
They are also well-adapted to the pricing of derivatives with early exercise
features. Whilst tree methods can be shown to be special cases of explicit
finite difference methods, the fact that when implementing them we are
trying to approximate a probability measure rather than a PDE gives rise
to different ideas for acceleration and parameter choices.

Whilst it follows from a suitably modified version of the Central Limit
theorem that tree prices converge to the Black–Scholes price, one would
also like to know in what way the convergence occurs. In addition, one
would like to be able to pick the tree in such a way as to accelerate
convergence. This problem has been solved for the European call and put
options with Diener and Diener, [8], and Walsh, [21], providing detailed
analyzes of convergence, and their work was extended by this author, [13],
to show that for a given European option, a binomial tree with arbitrarily
high order of convergence exists.
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However, for American options only limited progress has been made.
This is an important problem in that trading houses may need to price
thousands of contracts for book revaluation and VAR calculations. One
therefore wishes to be able to obtain a fast accurate price in a minimal
amount of time. The crucial issue for such calculations is to find a method-
ology that achieves a sufficiently accurate price quickly rather than which
is asymptotically best. Staunton [18] has examined various methodologies
for approximating American put including explicit finite differences, im-
plicit finite differences and analytic approximations, as well as trees. He
conclude that the Leisen–Reimer tree with the acceleration techniques of
extrapolation and truncation is best. However, he does not consider other
tree methodologies: the motivation for this tree choice seems to be that
the Leisen–Reimer tree is the most effective tree without acceleration tech-
niques and that these make it faster. However, this does not address the
possibility that a tree does poorly without acceleration may do better with
it. Our objective here is to find a fast binomial tree by examining many
choices of parameters and accelerations in order to find which is fastest.

It is known that for certain trees that the American put option has
order 1 convergence, [15] [17], but higher order convergence has not been
established for any choice of tree. Since the only real requirements on a
binomial tree are that the mean and variance in the risk-neutral measure are
asymptotically correct, even for a self-similar tree in which every node is
the same, there are infinite number of possible trees. For example, one can
discretize the real-world measure and then pass to the risk-neutral measure
and gain a different tree for each choice of the real-world drift. These will
all converge to the true price but will differ for any finite number of steps.
There are by now a large number of choices of parameters for trees, in
this paper, we focus on eleven of these which we believe have the most
interesting features, to attempt to do all possibilities would have resulted
in an impossibly bloated paper.

There is also the option of using trinomial trees and one can ask similar
questions in that case. We defer that work to the sequel [3] where similar
conclusions are drawn and, in particular, we see that the best binomial tree
found here is better than the best trinomial tree.

Many suggestions have been made for methodologies for improving
convergence for individual trees. The ability to use these is independent
of the choice of tree. We discuss some of the acceleration suggestions
that have been made. The first is due to Hull and White, [9], with this
approach one prices a European option with the same characteristics as the
American option on the same tree, and then adjusts the American option
price by assuming it has the same error as the European option. This can
be viewed as a control variate technique. We can expect it to do well
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(in terms of speed/accuracy tradeoff) when the European option is poorly
priced and badly when it is priced very accurately.

Broadie and Detemple, [2], suggested two modifications. The first of
these is to replace the price at the second last layer of nodes with the
price given by the Black–Scholes formula. The idea being that since one is
allowing no exercise opportunities between steps and we are approximating
the Black–Scholes model, this ought to give a more accurate price. In
addition, the Black–Scholes formula should give a price that smoothly
varies and so this should make the price smoother as a function of steps.
We shall refer to this as the smoothing technique.

Their second suggestion was to use Richardson extrapolation (RE) to
remove the first order term as far as possible. One therefore extrapolates
as if the lead term was of the form A/n although it is not. Broadie and
Detemple showed that the two techniques of smoothing and RE together
resulted in effective speed-ups for the CRR tree.

Staunton, [18], examined the convergence of binomial trees using trun-
cation. In particular, the tree is pruned so that nodes more than 6 standard
deviations from the mean in log space are not evaluated. This results in an
acceleration since it take less time to develop the tree for a given number
of steps, whilst behaviour more than six standard deviations has very little
effect on the price. He shows that the Leisen–Reimer tree with Richardson
extrapolation and truncation is very effective. Staunton’s work followed on
from that of Andicropoulos, Widdicks, Duck, and Newton, [1], who had
previously suggested curtailing the range of a tree according to distance
from mean and strike.

Since all these techniques can be implemented independently, we there-
fore have 24 different ways to improve each binomial tree. In addition,
there is a question when using Richardson extrapolation and smoothing
together whether one matches the smoothing times between the small and
large numbers of steps. This means that there are a total of 20 different
ways to implement each tree.

In addition, there is now a large number of different ways to choose
the parameters of a binomial tree, depending upon what characteristics
one wishes to emphasize. For example, one can attempt to match higher
moments, or to obtain smooth convergence, or achieve higher order con-
vergence for a specific European option. We will examine 11 of these
choices in this paper.

This results in 220 different ways to price an American put option.
It is not at all obvious which will perform best since some trees will
perform well in combination with some acceleration techniques and badly
with others. In this paper, we perform a comparison of all these methods
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running a large number of options for each case, and using a Leisen–
Reimer tree with a large number of steps and Richardson extrapolation as
a benchmark.

We find that the best choice of tree depends on how one defines error,
but that the two best trees are the Tian third moment-matching tree with
smoothing, Richardson extrapolation and truncation, and a new tree using
a time-dependent drift with extrapolation and truncation.

The structure of binomial trees and our eleven choices of parameters
are discussed in Section 2. The different ways these can be accelerated
is discussed in Section 3. We present numerical results in Section 4 and
conclude in Section 5.

I am grateful to Chris Beveridge, Mark Broadie, Nick Denson, Christo-
pher Merrill, Ken Palmer and Mike Staunton for their comments on an
earlier version of this paper.

2. Choices of binomial tree parameters

We quickly review our 11 choices of tree. A node in a tree is specified
by three things:

(1) the probability of an up move p,
(2) the multiplier on the stock price for an up move, u,
(3) the multiplier on the stock price for a down move, d.

Typically, trees are self-similar in that every node is the same in a relative
sense. Only one of our choices, the split tree, will not be self-similar. A
sequence of trees is therefore a specification of p, u and d as a function
of the number of steps. If we require the tree to be risk-neutral then p is
determined by u and d via the usual formula

p =
er∆T − d

u− d
, (2.1)

with
∆T =

T

N
.

(Only one of our trees, the Jarrow–Rudd tree, is not risk neutral.) A risk-
neutral tree is therefore a pair of sequences un and dn. To keep p between
zero and one, we must have

dn < er∆T < un. (2.2)
We work in the Black–Scholes model with the usual parameters: T is

maturity, r is the continuously compounding risk-free rate, St is the stock
price and σ is the volatility. We can also use µ the real-world drift when
constructing the tree if we choose: its choice may affect how convergence
occurs although it does not affect the limit.
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The choice of un and dn is constrained to ensure that the limiting tree is
the Black–Scholes model. Since pn constrains that the mean is correct, we
have one essential condition left: the variances must converge correctly.
Since we have two sequences and only one condition, there is still quite a
lot of flexibility.

We first discuss the 10 trees that are self-similar. The Cox–Ross–Rubinstein
(CRR) tree, [7], is the oldest tree:

un =eσ
√

∆T , (2.3)

dn =e−σ
√

∆T . (2.4)

The Tian tree, [19], uses the extra degree of freedom to match the first
three moments exactly for all n rather than just the first two in the limit.
It takes

un =
1

2
rnvn

(
vn + 1 + (v2

n + 2vn − 3)
1
2

)
, (2.5)

dn =
1

2
rnvn

(
vn + 1− (v2

n + 2vn − 3)
1
2

)
, (2.6)

rn =er∆T , (2.7)

vn =eσ2∆T . (2.8)

The Jarrow–Rudd (JR), [10], tree is not a risk-neutral tree and, in fact,
seems to be the only non-risk-neutral tree in common use:

un =eµ∆T+σ
√

∆T , (2.9)

dn =eµ∆T−σ
√

∆T , (2.10)

µ =r − 1

2
σ2, (2.11)

p =
1

2
. (2.12)

A simple modification of the Jarrow–Rudd tree is to take the value of p
that makes the tree risk-neutral. We shall refer this to this as the Jarrow–
Rudd risk-neutral tree (JRRN). This has also been studied by Jarrow and
Turnbull, [11].

It follows from the standard analysis of the binomial tree that one can
modify the CRR tree by taking an arbitrary real-world drift µ so

un =eµ∆T+σ
√

∆T , (2.13)

dn =eµ∆T−σ
√

∆T .
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(See for example, [12].) One choice is to take µ = 1
T
(log K− log S0), thus

guaranteeing that the tree is centred on the strike in log space. This was
done in [13] and we shall refer to that tree as the adjusted tree.

A similar approach has previously been suggested by Tian, [20], who
suggested moving the tree slightly so that the strike of the option would
land on a node in such a way as to minimize distortion. We shall refer to
this as the flexible tree.

Chang and Palmer, [5], also suggest a similar tree but make the strike lie
half-way between two nodes to obtain smoother convergence for European
options. We shall refer to this as the CP tree.

Leisen and Reimer, [16], suggested changing point of view to first spec-
ifying probabilities of an up move in both stock and bond measures. These
two quantities then determine the up and down moves. The probabilities
are chosen by using inversions of normal approximations to binomials to
get binomial approximations of normals. They suggest three different trees
and we will use the one they label (C) here; since that is the one which
appears to be in most common use [18]. Their tree had the features of only
being defined for odd numbers of steps and being approximately centred
on the option strike. This tree is known to have second order convergence
for European options, [14].

In [14], the analysis of Diener and Diener was extended and a tree with
third order convergence for European options, and a very small third order
lead term is explicitly constructed. We shall refer to this tree as J4. It is
only defined for odd numbers of steps. This tree agrees with the Leisen–
Reimer (C) tree to order 2.5 in the way the probabilities are specified.
Since American options typically have first order convergence, we can
expect the two trees to have similar convergence behaviour.

Another choice due to Chriss, [6], is to modify the u and d in the
Jarrow–Rudd model. We let

X =
2er∆T

u + d

and multiply u and d by X. This can be viewed as a symmetrized version
of JRRN. The tree is risk-neutral.

Our final tree is the only one that is not self-similar. Our motivation is
that whilst it is known that the Leisen–Reimer (C) tree has second order
convergence for European options, it can actually perform worse for in-
the-money American options [16]. This suggests that there is some odd
interaction between the exercise boundary and the tree in the money. We
therefore modify the adjusted tree above to use a time-dependent drift. In
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particular, if the integer part of n/2 is k, then we set
t1 =tk/n,

µ1 =
log K − log S0

t1
,

µ2 =0

and for the first k steps, we use drift µ1 and for the rest we use µ2. The up
and down moves are then defined as in equation (2.13). The idea here is
that in the first half we use a strong time-dependence to get the centre of
the tree at the same level as strike, and then in the second half, we have
no drift. We shall refer to this tree as the split tree.

It is worth noting that the trees designed to have smooth and/or higher
order convergence have node placement determined by the strike of the
option, and for those trees, we therefore have to build a different tree
for each option. This is not, however, true for the others including, in
particular, the Tian 3rd moment matching tree.

We remark that there are other possible choices and for a review of a
different set of 11 choices for pricing European options we refer the reader
to [4]. Our choices here were motivated by the desire to include

• higher order convergence for Europeans trees;
• the most popular and oldest trees e.g. CRR, Jarrow–Rudd, and
JRRN;

• the theoretically nicest trees, e.g. the higher order moment match-
ing;

• trees with nice lead order terms, e.g. the Chang–Palmer tree, the
adjusted tree, and the flexible tree of Tian.

Whilst 10 of our 11 trees have previously been studied most of them have
not been studied in combination with accelaration techniques so of our 220
trees, we estimate that at least 200 have not previously been examined.

3. The implementation choices

In this section, we list the implementation choices which can be applied
to any tree and define a key for our numeric results.

Our first implementation option is truncation. We only develop the tree
as far as 6 standard deviations from the mean in log-space computed in
the risk-neutral measure. At points on the edge of the truncated tree, we
take the continuation value to be given the Black–Scholes formula for a
European option. The probability of a greater than six standard deviation
move is 1E − 9. The difference between the European and American
prices will be slight so far out-of-the money, and so far in-the-money the
option will generally be behind the exercise boundary. These facts together
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mean that truncation has minimal effect on the price: typical effects are
around 1E-12. However, for large numbers of steps it can have large effects
on speed of implementation since the number of nodes no longer grows
quadratically. For small numbers of nodes, it can be slightly slower because
of the extra Black–Scholes evaluations. The use of truncation in tree pricing
was suggested by Andicropoulos, Widdicks, Duck, and Newton, [1], and
refined by Staunton [18].

We note that the location of the truncation will vary according to volatil-
ity and time. There are clearly many other ways to carry out truncation.
Our motivation here was to use a methodology that was sure to have min-
imal impact on price and we have therefore not examined the trade-off
between location of the truncation boundary and speed. Nor have we ex-
amined the issue of whether it is better to use the intrinsic value at the
boundary rather than the Black–Scholes prices. A full analysis would re-
quire one to take into account the fact that one can truncate at the edge of
a narrower space when using the Black–Scholes price. We leave this issue
to future work.

Our second implementation option is control variates. Given a binomial
tree, one prices both the American put and the European put. If PA is the
tree price of the American put, PE that of the European and PBS that
given by the Black–Scholes formula, we take the error controlled price to
be

P̂A = PA + PBS − PE.

Note that we can expect this to perform well when the European price is
poor, but that the error will change little when it is good. It does, however,
take a substantial amount of extra computational time. In particular, when
the order of convergence of the European option is higher than that of the
American option, we can expect little gain. This approach is due to Hull
and White, [9].

Our third implementation option is Richardson extrapolation. If the
price after n steps is

Xn = TruePrice +
E

n
+ o(1/n), (3.1)

then taking
Yn = AnXn + BnX2n+1

with An and Bn satisfying

An + Bn = 1.0,

An

n
+

Bn

2n + 1
= 0.0,
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then we get
Yn = TruePrice +o(1/n).

We therefore take

An =1−
(

1− n

2n + 1

)−1

, (3.2)

Bn =

(
1− n

2n + 1

)−1

. (3.3)

Whilst the error for an American put will not be of the form in (3.1), if
it is of this form plus a small oscillatory term, Richardson extrapolation
will still reduce the size of the error. One way to reduce the oscillations is
to use smoothing. Broadie and Detemple, [2], suggested using smoothing
and Richardson extrapolation together.

Our fourth implementation option is smoothing. Inside the tree model,
there will no exercise opportunities within the final step, so the derivative
is effectively European. This suggests that a more accurate price can be
obtained by using the Black–Scholes formula for this final step. With this
technique we therefore replace the value at each node in the second final
layer with the maximum of the intrinsic and the Black–Scholes value.

Since we can use each of these techniques independently of the others,
this yields 24 different choices. We also consider an extra choice which is
relevant when doing both smoothing and Richardson extrapolation. It is
possible that making the tree with n and 2n + 1 smooth at the same time
will result in better extrapolation than smoothing both of them at the last
possible time which will be different for the two trees. We can therefore
smooth at the first step after (n−1)T/n. This yields an extra 4 trees which
we will refer to as being matched.

4. Numerical results

In order to assess the speed/accuracy trade-off of various tree method-
ologies without being influenced by special cases, an approach based on
computing the root-mean-square (rms) error was introduced by Broadie
and Detemple, [2]. One picks option parameters from a random distribu-
tion and assesses the pricing error by using a model with a large number of
steps as the true value. One then looks at the number of option evaluations
per second against the rms error.

Since we want to be clear that our results do not depend on particular
choices of random distribution, we use identical parameters to that of
Leisen, [17], and proceed as follows: volatility is distributed uniformly
between 0.1 and 0.6. The time to maturity is, with probability 0.75, uniform
between 0.1 and 1.00 years and, with probability 0.25, uniform between
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Key Truncate Control Smooth Extrapolate Match
0 no no no no n/a
1 yes no no no n/a
2 no yes no no n/a
3 yes yes no no n/a
4 no no yes no n/a
5 yes no yes no n/a
6 no yes yes no n/a
7 yes yes yes no n/a
8 no no no yes n/a
9 yes no no yes n/a
10 no yes no yes n/a
11 yes yes no yes n/a
12 no no yes yes no
13 yes no yes yes no
14 no yes yes yes no
15 yes yes yes yes no
16 no no yes yes yes
17 yes no yes yes yes
18 no yes yes yes yes
19 yes yes yes yes yes

Table 3.1. The labelling of implementation options by number.

1.0 and 5.0 years. We take the strike price, K, to be 100 and take the
initial asset price S0 to be uniform between 70 and 130. The continuously
compounding rate, r, is, with probability 0.8, uniform between 0.0 and
0.10 and, with probability 0.2, equal to 0.0.

Some authors, [22], [18], have suggested using a model set of 16 extreme
cases. Whilst this is probably enough when comparing a small number of
models, here we will be doing 220 different models and want the number
of test cases to be greater than the number of models. We therefore used
2200 cases and used the same set of options for each of the 220 models.

When computing the rms error, Leisen following Broadie and Detemple
suggests using the relative error and dropping any cases where the true
value is below 0.5 in order to avoid small absolute errors on small values
distorting the results. Whilst this is reasonable, it is also criticizable in
that it is particularly lenient in the hardest cases. For a deeply out-of-the-
money option, the value will often be less than 0.5 so these are neglected.
For a deeply in-the-money option most of the value will be the intrinsic
value, so a large error on the model-dependent part may translate into a
small error in relative terms.
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We therefore introduce a new error measure which is intended to retain
the good features of the Broadie–Detemple approach whilst excising the
not so good ones. We therefore take the modified relative error to be

TreePrice−TruePrice

0.5 + TruePrice− IntrinsicValue
.

This has the virtue of stopping small errors in small prices appearing to
be large whilst still taking deeply in- and out-of-the-money options into
account. We also only assess the model-dependent part of the price.

For each of the eleven trees discussed, we run the tree with each of
the 20 options according to the keys in Table 3.1. We restrict to trees
with odd numbers of steps, since some trees, e.g. Leisen–Reimer, are only
defined in that case. For our model prices we used the Leisen–Reimer tree
with 5001 steps and Richardson extrapolation; this is following the choice
of Staunton [18]. All timings are done with a 3 GigaHertz single core
Pentium 4 processor.

We ran each tree with the following numbers of steps

25, 51, 101, 201, 401, 801.

We then used linear interpolation of log time against log error to estimate
the time required to find an absolute rms error of 1E-3, a modified relative
rms error of 1E-3 and a relative rms error (Broadie-Detemple) of 0.5E-
4. The difference in target values expressing the fact that the Broadie-
Detemple measure is more lenient.

From studying tables 4.1, 4.2, and 4.3. We see various effects. The most
marked one is that Richardson extrapolation is very effective when the tree
has been smoothed either by adapting the tree to the strike, or by using
the BS formula. In particular, the unadapted trees CRR, JR, JRRN, Tian
and Chriss do very badly in cases 8 through 11, but do much better in
cases 12 and higher, reflecting the Black–Scholes smoothing.

The control methodology is useful when the error is large, but when
the price is accurate without it, adding it in merely slows things down.
This suggests it is no longer a worthwhile technique for this problem. In
particular, the key of 15 almost always does worse than the key of 13 with
the only exceptions being the Chang–Palmer and flexible trees using the
Broadie–Detemple error measure.

Depending upon on our error methodology the most effective trees for
this test are Tian 13 (absolute and Broadie-Detemple) and split 8 (modified
relative.) Note, however, that split 9 (i.e. with truncation) is almost as good
as split 8, and, in fact, on detailed analysis, Table 4.4, we see that the
reason is that 25 steps is too many to get an error of 1E − 3. The time
has therefore been extrapolated giving the appearance that the untruncated
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key
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
CP

0.9
2.7

8.0
19.5

7.8
17.3

27.1
53.5

44.4
73.1

27.0
48.7

42.2
70.2

26.0
47.3

43.7
72.5

26.3
47.8

CRR
2.0

5.4
9.0

21.3
7.5

16.6
26.4

52.4
0.3

0.9
1.4

4.0
45.8

75.4
32.0

56.4
47.3

77.7
32.9

57.7
J4

7.2
16.3

5.0
12.9

1.3
3.7

16.0
34.4

44.4
73.2

31.1
54.9

42.1
70.1

29.1
51.9

43.5
72.3

30.0
53.4

JR
1.8

4.9
6.4

16.0
8.4

18.4
16.9

36.0
0.23

0.7
1.3

3.7
42.7

70.8
30.1

53.4
44.9

74.3
31.4

55.5
JRRN

1.8
4.9

6.4
16.1

8.4
18.4

16.9
36.0

0.24
0.7

1.3
3.7

42.7
71.0

30.1
53.6

45.0
74.4

30.9
55.6

LR
7.2

16.2
4.9

12.9
1.3

3.7
16.0

34.4
44.2

72.9
31.1

54.8
42.0

69.8
29.1

51.9
43.5

72.2
30.0

53.3
Tian

0.3
1.0

0.8
2.8

0.3
1.1

0.9
3.1

0.27
0.8

1.5
4.3

143.6
200.5

98.5
143.7

125.6
179.4

85.0
127.0

adjusted
1.1

3.1
4.3

11.5
7.8

17.4
12.9

28.6
44.2

72.9
31.0

54.7
41.7

69.3
29.2

52.1
43.5

72.1
29.9

53.3
Chriss

1.9
5.1

5.8
14.7

8.9
19.3

15.4
33.3

0.24
0.7

1.3
3.7

42.8
71.0

30.1
53.4

44.9
74.2

31.5
55.6

flexible
1.0

3.0
2.1

6.3
7.1

16.1
25.4

50.5
44.3

72.9
29.4

52.3
41.2

68.7
28.0

50.2
43.1

71.0
28.8

51.7
split

1.1
3.1

3.5
9.6

1.9
5.2

6.1
15.3

101.7
149.2

74.7
17.6

83.3
126.4

62.9
49.2

99.3
146.7

65.8
48.9

Table
4.1.

N
um

berofoption
evaluations

a
second

w
ith

an
absolute

rm
s
errorof1E-3.
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ke
y

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

CP
23

45
21
9

30
5

17
9

25
7

46
0

57
3

65
9

75
0

44
1

51
1

57
4

66
9

39
8

46
9

67
7

77
0

40
1

47
3

CR
R

61
10
3

32
0

42
0

16
3

23
8

63
5

75
6

14
27

34
59

59
2

68
0

40
1

46
8

62
9

72
7

42
1

49
6

J4
46
5

60
1

32
3

42
8

46
82

85
9

99
1

91
0

10
07

63
4

71
5

78
0

69
4

40
5

46
0

68
0

74
7

47
0

52
2

JR
43

76
12
3

18
7

11
0

17
1

14
5

21
6

8
17

57
91

16
47

17
11

12
27

12
59

18
96

19
19

12
72

12
93

JR
RN

43
76

12
4

18
8

11
0

17
1

14
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key
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
CP

22
42

231
319

175
252

566
682

296
375

414
484

283
362

380
451

290
370

362
435

CRR
41

73
255

347
166

241
583

704
5

12
46

76
716

808
501

569
753

855
506

582
J4

445
578

309
412

38
69

658
786

1254
1344

888
963

997
930

527
586

906
977

595
650

JR
31

58
92

148
94

150
107

167
5

11
47

77
1236

1305
876

922
1150

1205
788

835
JRRN

31
58

93
148

94
150

107
167

5
11

47
78

1349
1453

931
992

1242
1330

825
898

LR
446

570
311

409
38

69
665

778
1282

1371
893

970
1021

1119
609

686
1014

1124
655

684
Tian

13
28

33
63

17
34

32
62

5
11

47
77

1652
1675

1164
1187

1266
1302

859
901

adjusted
27

52
220

305
22

43
441

553
924

1023
450

496
873

965
433

658
973

1058
430

693
Chriss

31
58

92
147

96
152

107
167

5
11

47
77

1150
1214

820
875

1069
1136

832
900

flexible
14

29
76

125
163

239
607

726
289

368
384

456
282

359
354

423
283

364
351

422
split

3
7

78
69

2
5

119
183

453
557

207
24

443
533

181
67

532
635

182
67

Table
4.3.

N
um

berofoption
evaluations

a
second

obtainable
w
ith

a
relative

errorof0.5E-4
w
ith

0.5
cut-off.
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steps Error Split 8 Time Split 8 Error Split 9 Time Split 9
25 8.491E-04 4.687E-04 8.491E-04 4.622E-04
51 5.292E-04 1.698E-03 5.292E-04 1.447E-03
101 1.108E-04 6.868E-03 1.108E-04 4.946E-03
201 4.710E-05 2.743E-02 4.710E-05 1.615E-02
401 2.089E-05 1.092E-01 2.089E-05 5.342E-02
801 6.916E-06 4.402E-01 6.915E-06 1.831E-01
Table 4.4. Detailed data for split 8 and split 9. Error is
modified relative error. The time is the average time to price
one option.

tree is better when, in fact, it is not. For every case run, the errors are
indistinguishable whilst the split 9 tree is better on time.

Other points to note are that Leisen–Reimer and J4 give almost identical
results as expected, and that the adjusted tree with RE is also very similar
to these trees with RE.

Another curiosity is that in certain cases the combination of trunca-
tion and control does very badly for the split tree. This suggests that the
truncated split tree is doing a poor job of pricing the European option.

If one takes a key of 0, that is with no acceleration techniques, it is,
in fact, the LR and J4 trees that are best, and Tian that is the worst. This
demonstrates that the accuracy in the zero case is a poor predictor of
accuracy after acceleration.

The contents of the final four columns and the previous four suggest that
the precise choice of time to smooth is not important in that the columns
are qualitatively similar with no clear trends.

Whilst these tests have been effective for seeing how much time is
required to get a good level of accuracy, they do not answer the question
of which tree to use when a very high level of accuracy is required. A
second set of tests was therefore run for the most accurate trees. In this
case, the model prices were obtained from the Leisen–Reimer tree with
10001 steps and extrapolation.

The number of steps run were

101, 201, 401, 801, 1601.

The number of option prices run was 12, 000.
Examining table 4.5, we see from the column with 1601 steps that Tian

17 achieves the smallest error with split 9 close behind. The only methods
which are faster with that number of steps are the 4 last ones which do not
involve Richardson extrapolation. Their errors are much larger, however.
We need to compare with different number of steps, this is done in Figure
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1601

1601
801

801
401

401
201

201
101

101
nam

e
key

error
speed

error
speed

error
speed

error
speed

error
speed

Tian
17

3.73E-05
1.55

8.93E-05
5.45

2.15E-04
18.56

5.59E-04
61.40

1.08E-03
199.28

split
9

3.78E-05
1.56

8.18E-05
5.51

2.39E-04
18.87

5.98E-04
62.27

1.21E-03
204.19

split
17

3.86E-05
1.56

8.26E-05
5.47

2.37E-04
18.66

5.99E-04
61.32

1.22E-03
198.76

Tian
15

3.88E-05
1.31

9.16E-05
4.42

2.24E-04
14.45

5.58E-04
46.02

1.03E-03
145.08

Tian
13

4.00E-05
1.56

9.35E-05
5.48

2.24E-04
18.68

5.56E-04
61.76

1.03E-03
201.07

split
13

4.10E-05
1.55

9.11E-05
5.45

2.58E-04
18.61

6.33E-04
61.42

1.34E-03
200.53

adjusted
17

5.57E-05
1.55

1.57E-04
5.46

3.78E-04
18.60

8.86E-04
61.47

1.96E-03
199.46

J4
9

5.58E-05
1.56

1.57E-04
5.46

3.75E-04
18.66

8.78E-04
61.95

1.97E-03
203.82

J4
8

5.58E-05
0.57

1.57E-04
2.31

3.75E-04
9.11

8.78E-04
36.32

1.97E-03
147.28

LR
9

5.58E-05
1.56

1.57E-04
5.47

3.75E-04
18.70

8.78E-04
62.03

1.98E-03
203.82

LR
8

5.58E-05
0.57

1.57E-04
2.29

3.75E-04
9.12

8.78E-04
36.26

1.98E-03
146.11

J4
17

5.63E-05
1.55

1.58E-04
5.45

3.78E-04
18.54

8.78E-04
61.35

1.97E-03
199.28

LR
17

5.63E-05
1.55

1.58E-04
5.46

3.77E-04
18.58

8.78E-04
61.37

1.97E-03
199.46

JRRN
19

6.68E-05
1.31

1.36E-04
4.42

3.12E-04
14.42

8.23E-04
45.83

1.73E-03
143.41

Chriss
17

6.70E-05
1.56

1.36E-04
5.47

3.13E-04
18.60

8.23E-04
61.50

1.72E-03
197.87

JRRN
17

6.70E-05
1.56

1.36E-04
5.47

3.13E-04
18.62

8.24E-04
61.57

1.72E-03
199.10

JR
17

6.70E-05
1.55

1.36E-04
5.46

3.13E-04
18.58

8.24E-04
61.40

1.72E-03
198.93

Chriss
13

6.93E-05
1.56

1.44E-04
5.46

3.30E-04
18.59

8.51E-04
61.66

1.80E-03
200.35

JR
13

6.93E-05
1.55

1.44E-04
5.46

3.31E-04
18.62

8.52E-04
61.71

1.80E-03
201.08

JRRN
13

6.93E-05
1.55

1.44E-04
5.46

3.31E-04
18.61

8.52E-04
61.71

1.80E-03
200.90

flexible
9

1.01E-04
1.55

2.06E-04
5.46

3.67E-04
18.67

8.54E-04
62.00

2.42E-03
202.90

flexible
13

1.02E-04
1.55

2.11E-04
5.45

3.83E-04
18.43

8.98E-04
61.32

2.49E-03
200.18

CP
17

1.03E-04
1.55

2.05E-04
5.46

3.53E-04
18.59

8.56E-04
61.42

2.25E-03
198.92

CRR
7

2.83E-04
5.79

5.58E-04
18.97

1.14E-03
61.44

2.33E-03
192.60

4.72E-03
630.97

flexible
7

2.84E-04
5.79

5.63E-04
19.00

1.16E-03
61.47

2.38E-03
192.11

4.89E-03
629.16

LR
7

3.45E-04
5.75

7.08E-04
18.91

1.38E-03
61.39

2.80E-03
192.28

5.94E-03
622.11

J4
7

3.45E-04
5.79

7.08E-04
18.97

1.38E-03
61.42

2.80E-03
192.43

5.94E-03
630.97

Table
4.5.

rm
s
error

in
absolute

term
s
and

num
ber

of
option

evaluations
per

second
for

27
good

cases
using

12,000
evaluations.
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1601

1601
801

801
401

401
201

201
101

101
nam

e
key

error
speed

error
speed

error
speed

error
speed

error
speed

Tian
17

2.80E-06
1.55

7.11E-06
5.45

1.57E-05
18.56

3.80E-05
61.40

8.45E-05
199.28

Tian
15

3.17E-06
1.31

7.84E-06
4.42

1.69E-05
14.45

4.05E-05
46.02

8.23E-05
145.08

Tian
13

3.34E-06
1.56

8.14E-06
5.48

1.71E-05
18.68

4.06E-05
61.76

8.01E-05
201.07

split
9

3.50E-06
1.56

8.53E-06
5.51

2.09E-05
18.87

5.71E-05
62.27

1.71E-04
204.19

split
17

3.57E-06
1.56

8.42E-06
5.47

1.97E-05
18.66

5.11E-05
61.32

1.40E-04
198.76

JRRN
19

3.86E-06
1.31

8.69E-06
4.42

2.09E-05
14.42

4.83E-05
45.83

1.14E-04
143.41

Chriss
17

3.92E-06
1.56

8.76E-06
5.47

2.10E-05
18.60

4.86E-05
61.50

1.13E-04
197.87

JR
17

3.92E-06
1.55

8.76E-06
5.46

2.10E-05
18.58

4.86E-05
61.40

1.13E-04
198.93

JRRN
17

3.92E-06
1.56

8.76E-06
5.47

2.10E-05
18.62

4.86E-05
61.57

1.13E-04
199.10

split
13

4.16E-06
1.55

1.01E-05
5.45

2.46E-05
18.61

6.42E-05
61.42

1.82E-04
200.53

Chriss
13

4.39E-06
1.56

1.03E-05
5.46

2.29E-05
18.59

5.23E-05
61.66

1.15E-04
200.35

JR
13

4.39E-06
1.55

1.03E-05
5.46

2.29E-05
18.62

5.23E-05
61.71

1.15E-04
201.08

JRRN
13

4.39E-06
1.55

1.03E-05
5.46

2.29E-05
18.61

5.23E-05
61.71

1.15E-04
200.90

LR
9

5.47E-06
1.56

1.23E-05
5.47

2.48E-05
18.70

5.35E-05
62.03

1.16E-04
203.82

LR
8

5.47E-06
0.57

1.23E-05
2.29

2.48E-05
9.12

5.35E-05
36.26

1.16E-04
146.11

J4
9

5.47E-06
1.56

1.23E-05
5.46

2.48E-05
18.66

5.35E-05
61.95

1.16E-04
203.82

J4
8

5.47E-06
0.57

1.23E-05
2.31

2.48E-05
9.11

5.35E-05
36.32

1.16E-04
147.28

adjusted
17

5.48E-06
1.55

1.24E-05
5.46

2.47E-05
18.60

5.42E-05
61.47

1.18E-04
199.46

J4
17

5.51E-06
1.55

1.24E-05
5.45

2.48E-05
18.54

5.42E-05
61.35

1.19E-04
199.28

LR
17

5.51E-06
1.55

1.24E-05
5.46

2.48E-05
18.58

5.43E-05
61.37

1.20E-04
199.46

CP
17

8.08E-06
1.55

2.00E-05
5.46

4.74E-05
18.59

1.02E-04
61.42

3.00E-04
198.92

flexible
9

8.49E-06
1.55

1.87E-05
5.46

4.47E-05
18.67

1.22E-04
62.00

2.97E-04
202.90

flexible
13

8.81E-06
1.55

1.96E-05
5.45

4.64E-05
18.43

1.26E-04
61.32

3.00E-04
200.18

CRR
7

2.81E-05
5.79

5.36E-05
18.97

1.03E-04
61.44

2.38E-04
192.60

4.43E-04
630.97

flexible
7

2.86E-05
5.79

5.38E-05
19.00

1.05E-04
61.47

2.45E-04
192.11

4.44E-04
629.16

J4
7

3.81E-05
5.79

7.13E-05
18.97

1.32E-04
61.42

2.40E-04
192.43

4.34E-04
630.97

LR
7

3.81E-05
5.75

7.13E-05
18.91

1.32E-04
61.39

2.40E-04
192.28

4.34E-04
622.11

Table
4.7.
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Figure 1. Number of evaluations per second against rms
absolute error for three trees with log scale.
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Figure 2. Number of evaluations per second against mod-
ified relative rms error for four trees with log scale.
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Figure 3. Number of evaluations per second against
Broadie–Detemple relative rms error for five trees with log
scale.
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Figure 4. Number of evaluations per second against
Broadie–Detemple relative rms error for five trees with log
scale.
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1. We see clearly that CRR 7 is substantially worse than Tian 17 and split
9.

If one’s objective is to minimize absolute error then it is clear that
we should use Tian 17: that is third moment matching with smoothing,
Richardson extrapolation, truncation and matching smoothing times. The
choice of split 9 is also competitive. Note that the smallest error varies
with number of steps and with 401 steps, it is split 9 that wins. This
suggests that the trees are essentially the same in accuracy.

For modified relative error, we examine table 4.6, we see from the
column with 1601 steps that split 9 has the smallest error with split 17,
Tian 13, Tian 15 and Tian 17 almost as good. Again the last 4 are faster
with larger errors so we plot error against speed in Figure 2. We see clearly
that CRR 7 is substantially worse than Tian 15, Tian 13 and split 9. We
also see that Tian 15 is worse than Tian 13. The comparison between Tian
15 and Tian 13 suggests that although the use of a control does reduce
error in this case, the additional computational effort is not worth the
improvement.

If one’s objective is to minimize modified rms error then it is clear that
we should use split 9; Tian 13 is also a good choice.

Examining table 4.7, we see from the column with 1601 steps that Tian
17 achieves the smallest error with Tian 15, Tian 13 and split 9 almost as
good. The only methods which are faster with that number of steps are yet
again the 4 last ones which do not involve extrapolation and we compare
with different number of steps, in Figure 3 and in Figure 4. We see clearly
that CRR 7 is substantially worse than Tian 17, Tian 15, Tian 13 and
split 9. We also see that Tian 15 is worse than Tian 13 and Tian 17. The
comparison between Tian 15 and Tian 13 suggests that although the use
of a control does reduce error in this case, the additional computational
effort is not worth the improvement.

If one’s objective is to minimize Broadie-Detemple rms error then it
is clear that we should use Tian 17; Tian 13 and split 9 are also viable
choices.

The reader may be interested in the order of convergence as well as the
size of the errors. These were estimated by regressing the log RMS error
against log time taken and fitting the best straight line through the cases
with 201, 401 and 801 steps. The slopes are displayed in Table 4.8. We
display results for absolute errors, relative errors with modification, and
the Broadie–Detemple relative errors.

CRR 0 corresponds to the original tree of Cox, Ross and Rubinstein
with no acceleration techniques, and its order is roughly −0.5. The CRR
12 tree corresponds to the BBSR method of Broadie and Detemple. Its
convergence order is about −2/3 as a function of time, and so −4/3 as
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order order order
name key absolute modified BD
CRR 0 -0.508 -0.454 -0.506
CRR 12 -0.505 -0.598 -0.676
CRR 13 -0.575 -0.684 -0.770
LR 9 -0.738 -0.756 -0.710
Split 9 -0.922 -0.790 -0.925
Tian 13 -0.829 -0.672 -0.724
Tian 17 -0.856 -0.906 -0.766

Table 4.8. Order of convergence as expressed as a power
of time for a selected few interesting cases.

a function of the number of steps (when using the BD error measure.)
Curiously, the order of convergence for absolute errors does not appear to
improve above that of CRR 0 although the constant is, of course, much
lower. The Tian 13 and 17 methods, and the split 9 method again display
more rapid convergence than the other methods.

5. Conclusion

Pulling all these results together, we see that for pricing an American
put option in the Black–Scholes model with high accuracy and speed,
we should always use truncation and extrapolation. We should also use
a technique which reduces the oscillations in the European case: that is
smoothing or modifying the lattice to take account of strike.

The best overall results have been obtained the Tian third moment
matching tree together with truncation, smoothing and extrapolation, and
the new split tree which uses a time-dependent drift to minimize oscilla-
tions, together with extrapolation and truncation. We have not investigated
in this paper the optimal level of truncation but have instead adopted a
level that has minimal effect on price. The Tian tree has the added bonus
that the node placement does not depend on strike so there is the additional
possibility of pricing many options simultaneously.

Interestingly, neither of the preferred trees are amongst those in popular
use at the current time. This is despite the fact that the Tian tree was
first introduced fifteen years ago. A possible explanation is that its virtue,
matching three moments, does not have much effect when the pay-off is not
smooth, and so initial tests without smoothing and extrapolation showed
it to be poor.
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