FAST MONTE-CARLO GREEKS FOR FINANCIAL PRODUCTS WITH DISCONTINUOUS PAY-OFFS

JIUN HONG CHAN AND MARK JOSHI

Abstract. We introduce a new class of numerical schemes for discretizing processes driven by Brownian motions. These allow the rapid computation of sensitivities of discontinuous integrals using pathwise methods even when the underlying densities post-discretization are singular. The two new methods presented in this paper allow Greeks for financial products with trigger features to be computed in the LIBOR market model with similar speed to that obtained by using the adjoint method for continuous pay-offs. The methods are generic with the main constraint being that the discontinuities at each step must be determined by a one-dimensional function: the proxy constraint. They are also generic with the sole interaction between the integrand and the scheme being the specification of this constraint.

1. Introduction

Whilst Monte Carlo simulation has long been a standard technique for the evaluation of high-dimensional integrals, there are still many subtleties to be explored. One particular issue of importance in financial and engineering applications is computing the sensitivities of such integrals to parameters. Much progress has been made on that question with the two most popular methods being the pathwise and likelihood ratio methods of Broadie and Glasserman (1996). If we write our integral in the form

\[\int g(x, \theta)\Phi(x, \phi)dx, \]

where \(g \) is the integrand and \(\Phi \) is a probability density, then the pathwise method relies on the differentiability of \(g \) (in fact, Lipschitz continuity is enough,) whereas the likelihood ratio method relies on the non-singularity of \(\Phi \). Generally by performing a change of variables one can shift the parameter dependence into either \(g \) or \(\Phi \) and thus provided one of the two is well-behaved, the sensitivity can be calculated. However, if the density is singular and the pay-off is discontinuous then neither method applies. A natural example of such a case is the pricing of a trigger product using a low-factor LIBOR market model. The most notorious such product is the targeted range note (TARN) which early terminates when a pre-specified total coupon has been paid, Piterbarg (2004). Other approaches using Malliavin calculus have been proposed Benhamou (2003), however, these appear to have the same limitations as the likelihood ratio method. The likelihood ratio also has the feature that even when applicable it tends to lead to high variances for Greeks of short-dated products.

Date: October 26, 2010.

Key words and phrases. Price Sensitivities, Monte-Carlo Greeks, Partial Proxy Simulation Scheme, Minimal Partial Proxy Simulation Scheme, Pathwise Method, Trigger Product, Discontinuous Pay-off, Digital Option, Target Redemption Note, LIBOR Market Model.
The fundamental problem to be addressed when attempting to apply the pathwise method to discontinuous integrals is that if a function has a jump discontinuity across a hypersurface then its distributional derivative is a Delta distribution on that hypersurface, for example, see Friedlander and Joshi (1999). There are a number of ways to address this issue. Joshi and Kainth (2003), Rott and Fries (2005), and Brace (2007) adopt the approach of explicit evaluation by integrating over the hypersurface. Whilst this works, the degree of handcrafting for each new case makes this approach unattractive. Hong and Liu (2008) and Lyuu and Teng (2008) simplify the implementation by using a kernel smoothing technique and importance sampling respectively to reduce the degree of handcrafting.

The fact that the pathwise method results in a Delta distribution is reflected by the fact that the standard error for finite differencing blows up as the size of the bump used goes to zero. Fries and Joshi (2008b) and Chan and Joshi (2009) developed regularization schemes that allowed small bumps without blow-up; these were named the partial proxy (PP) and minimal partial proxy schemes (MPP). We shall refer to these as finite proxy schemes. These simulation schemes involved using importance sampling to avoid large changes on single paths by fixing a proxy constraint that ensured that bumps did not cause the hypersurface to be crossed. These solved the problem of computing Greeks in the case where both pay-off and density were singular by allowing the computations of Greeks via small bumps. However, these methods still suffered from the same disadvantages that finite differencing does in the continuous case, and, in particular, require a simulation for each bump.

For the case where the payoff is Lipschitz continuous, the limit as the bump-size goes to zero is the pathwise method, and if the computation is implemented correctly, a huge speed-up over finite differencing can be achieved using the adjoint method to compute all sensitivities simultaneously, Giles and Glasserman (2006). A natural question is therefore whether the finite proxy simulation schemes can be taken to the limit to achieve a similar scale of speed-up for the discontinuous case.

Here we answer that question in the affirmative and we use this idea to develop new methods that achieve the same scale of improvement over the finite proxy schemes that the adjoint pathwise method does over finite differencing. The resulting methods can be roughly viewed as the pathwise method in directions tangent to the hypersurface of singularity whilst using importance sampling to achieve a likelihood ratio in the normal direction. For the pathwise partial proxy scheme this likelihood ratio is used along the entire orthogonal line. The pathwise minimal partial proxy differs in that a smoothly varying mix of likelihood ratio and pathwise method is chosen in such a way as to minimize variance whilst being purely likelihood ratio at the point of singularity. The pathwise MPP scheme thus has the virtue of lower variance whilst having the disadvantage that the singularity must lie on a hypersurface, whilst the pathwise PP scheme can cope with functions that have multiple singularities provided they are smooth after restriction to level sets of the proxy constraint.

If one collapses to the one-dimensional case, for example, a digital option in the Black–Scholes model then the pathwise PP scheme is just the likelihood ratio method since there are no tangent directions. However, the pathwise MPP scheme yields a lower variance mixture of the pathwise and likelihood ratio methods that appears to be new even in this very simple case.
An additional virtue of the methods presented here is that the singularity is required to be across a hypersurface at each step of the simulation rather than across a single hypersurface in the entire domain of integration as in Hong and Liu (2008) and Lyuu and Teng (2008). The hypersurface of singularity can itself be stochastic depending upon data arriving at the previous time step. This means that sensitivities of quite complicated expectations can be computed, such as the number of times a (stochastic) barrier is crossed. An example of a financial product that requires this property is an autocap which pays out the first few times a forward rate crosses a barrier. The methods presented in Hong and Liu (2008) and Lyuu and Teng (2008) do not seem to be able to cope with this case.

Our work in this paper therefore has multiple strands. We extend the minimal partial proxy scheme to work with a more general class of constraints than those presented in Chan and Joshi (2009) and, in particular, allow non-linear constraints. We carry out the analysis of the small bump-size limit to show that the schemes do, in fact, converge. We study the efficient implementation of these new schemes and, in particular, show that they can be done with low computational cost just as in the continuous case. We then study and analyze various challenging financial and non-financial examples which include computing the sensitivities of the expected number of times that the underlying state variables cross some predetermined hypersurfaces and evaluating the price sensitivities (i.e. Greeks) for financial products with discontinuous pay-offs using the Black-Scholes model and LIBOR market model. Our numerical results demonstrate that the new schemes truly are effective.

The paper is organized as follow: in section 2, we outline the numerical schemes and the notations used in this paper. In section 3, we introduce a class of numerical schemes which we dub the quasi mean-shifted proxy schemes. A brief review of the partial proxy simulation scheme is also presented together with the generalized version of the minimal partial proxy simulation scheme. Section 4 shows that under the quasi mean-shifted proxy schemes, we can interchange the expectation and differentiation when computing price sensitivities. We derive the pathwise derivatives for the partial proxy simulation scheme and the minimal partial proxy simulation scheme in section 5. In section 6 and 7, we will demonstrate how pathwise derivatives for both the partial proxy simulation schemes and the minimal partial proxy simulation schemes can be evaluated using a naive method and the adjoint method. Section 8 shows that, under the LIBOR Market Model, all deltas and vegas can be evaluated with a computational order proportional to the number of rates times the number of factors at each step of the simulation using the pathwise partial proxy method and the pathwise minimal partial proxy method. In section 9, we discuss the relationships between both the pathwise partial proxy method and the pathwise minimal partial proxy method with the standard pathwise method and the likelihood ratio method. In section 10, a brief discussion of the products and model used for our numerical tests is provided with numerical results presented in section 11. We conclude in section 12.
2. Numerical Scheme and Greeks

2.1. Numerical Scheme Specification. Suppose that the underlying quantities of a financial product after a change of coordinates (e.g. in log-coordinates), \(K = (K_1, K_2, \ldots, K_n)^T \), satisfy the following stochastic differential equation (SDE),

\[
dK(t) = \mu(K, \theta, t) dt + \Sigma(K, \theta, t) dW(t),
\]

(2.1)

where \(\theta \) denotes a parametric vector of initial inputs, \(\mu(K, \theta, t) \) is an \(n \)-dimensional column vector, \(W(t) \) is an \(n \)-dimensional column vector of correlated Brownian motions and \(\Sigma(K, \theta, t) \) is an \(n \times n \) diagonal matrix. Given a vector of inputs \(\theta \), we define \(K^E_i(\theta) \) to be the discretization of \(K \) at time \(t_i \) under a numerical scheme \(G \). We also have the \(j \)th element of the discretization of \(\theta \) at time \(t_i \) given by \(K^G_j(\theta) \). Hence, under an Euler discretization scheme, \(E \), we have

\[
K_{i+1}^E(\theta) = K_i^E(\theta) + \mu(K_i^E(\theta), \theta, t_i) \Delta t_i + A(K_i^E(\theta), \theta, t_i) Z_{i+1},
\]

(2.2)

where \(Z_{i+1} \) is a \(d \)-dimensional vector of independent standard normal random variables and \(\Delta t_i = t_{i+1} - t_i \). The pseudo-square root, \(A(K_i^E(\theta), \theta, t_i) = (a_{ij}(K_i^E(\theta), \theta, t_i)) \), is an \(n \times d \) matrix satisfying

\[
A(K_i^E(\theta), \theta, t_i)A(K_i^E(\theta), \theta, t_i)^T = C(K_i^E(\theta), \theta, t_i)
\]

(2.3)

where \(C(K_i^E(\theta), \theta, t_i) \) is the \(n \times n \) covariance matrix of \(K_i^E(\theta) \) from time \(t_i \) to \(t_{i+1} \). In general, the matrix \(A(K_i^E(\theta), \theta, t_i) \) is not unique and there are many different pseudo-square roots that satisfy equation (2.3) (see Joshi, 2003a). Under a reduced-factor model, we also have \(d < n \) to reduce the computational time (see Joshi, 2003b). For simplicity, equation (2.2) will be written as

\[
K_{i+1}^E(\theta) = F_i(K_i^E(\theta), Z_{i+1}, \theta)
\]

(2.4)

where \(F_i \) is a smooth mapping function from time \(t_i \) to \(t_{i+1} \). The discretized process \(K_i^E(\theta) \) is said to be adapted to \(\mathcal{F}_{t_i} \) where \(\mathcal{F}_{t_i} \) is a filtration generated by \(Z_1, Z_2, \ldots, Z_i \) i.e.

\[
\mathcal{F}_{t_i} := \sigma(Z_1, Z_2, \ldots, Z_i).
\]

2.2. Monte-Carlo Greeks - The Bump and Revalue Approach. When computing Greeks, we will have a vector of base inputs \(\theta_0 \) and we wish to find the change in value arising from a shift to a vector of perturbed inputs \(\theta_B \). We define \(E^A \) to be the Euler scheme \(E \) with a vector of initial input \(\theta_A \). Therefore, under \(E^0 \), we have

\[
K_{i+1}^E(\theta_0) = F_i(K_i^E(\theta_0), Z_{i+1}, \theta_0).
\]

(2.5)

with the initial state variables given by \(K_0^E(\theta_0) \). Similarly, under \(E^B \), we have

\[
K_{i+1}^E(\theta_B) = F_i(K_i^E(\theta_B), Z_{i+1}, \theta_B).
\]

(2.6)

with the initial state variables given by \(K_0^E(\theta_B) \).

Under the usual bump-and-revalue approach, the Monte-Carlo Greeks are calculated by applying finite differences to prices obtained using \(K_i^E(\theta_0) \) and \(K_i^E(\theta_B) \) where both are generated using a common \(Z \). Although, in general, this method works well for financial products with continuous pay-offs, the Monte-Carlo Greeks of financial products with digital-type pay-offs calculated using
such an approach can have high variances due to the pathwise discontinuities (For example, see Fries and Joshi (2008b)).

3. QUASI MEAN-SHIFTED PROXY SIMULATION SCHEMES

3.1. Quasi Mean-Shifted Proxy Simulation Schemes.

Definition 1. A numerical scheme \(Q \) is said to belong to the class of quasi mean-shifted proxy simulation schemes if \(Q \) has the following properties

\[
K^Q_0(\theta) = K^E_0(\theta) \\
K^Q_{i+1}(\theta) = F_i(K^Q_i(\theta), Z_{i+1} - \nu^Q_{i+1}(\theta, Z_{i+1}), \theta), \tag{3.1}
\]

where \(F_i \) is the same mapping function defined in (2.4).

The quasi mean-shifted proxy simulation schemes can be viewed as measure changes performed on \(Z \) such that in this new measure, \(Z \) has a drift of \(-\nu^Q\). In order to produce the same expectation as in the original measure, we have to compensate the measure changes with a likelihood ratio term (i.e. Monte-Carlo weight or Radon-Nikodym derivative).

Since we are now considering a post-discretization measure change, we are no longer constrained by Girsanov’s theorem and the restrictions on measure changes are now much weaker. Whilst the conventional mean-shift requires \(\nu^Q_{i+1} \) to be \(\mathcal{F}_{t_i} \)-measurable, here, \(\nu^Q_{i+1} \) is allowed to depend on the realization of \(Z_{i+1} \) (i.e \(\mathcal{F}_{t_{i+1}} \)-measurable). In other words, the solution for \(\nu^Q_{i+1} \) can be selected accordingly based on the outcome of \(Z_{i+1} \) and this provides us with a great deal of flexibility on how measure changes can be performed. Our ability to depart from the conventional mean-shift comes from the fact that the Monte-Carlo weight for such \(\mathcal{F}_{t_{i+1}} \)-measurable mean-shifts can be derived easily from the discretization scheme (see Fries and Joshi, 2008b). Note that, for a finite-dimensional integral, a post-discretization measure change can simply be regarded as a change of variables.

Proposition 1. Under the quasi mean-shifted proxy simulation schemes, the Monte-Carlo weight from \(t_i \) to \(t_{i+1} \) is given by

\[
w^Q_{i+1}(\theta) = \left| \det \left(\frac{\partial \tilde{Z}_{i+1}}{\partial Z_{i+1}} \right) \right| \frac{\phi^*(\tilde{Z}_{i+1})}{\phi^*(Z_{i+1})} \tag{3.2}
\]

where

\[
\tilde{Z}_{i+1} = Z_{i+1} - \nu^Q_{i+1}(\theta, Z_{i+1})
\]

and \(\phi^* \) is the density function of a \(d \)-dimensional multivariate standard normal distribution.

Proof. Suppose that \(\tilde{Z} = Z - \nu(Z) \) and \(g : \mathbb{R}^d \rightarrow \mathbb{R}, \) we have

\[
\int_{\mathbb{R}^d} g(\tilde{Z})\phi^*(\tilde{Z})d\tilde{Z} = \int_{\mathbb{R}^d} \left| \det \left(\frac{\partial \tilde{Z}}{\partial Z} \right) \right| \frac{\phi^*(\tilde{Z})}{\phi^*(Z)} g(\tilde{Z})\phi^*(Z)dZ.
\]

As Monte-Carlo simulations usually involve multiple steps, expectations obtained using the quasi mean-shifted proxy schemes must be weighted by the accumulated weight (i.e \(\prod w^Q_i(\theta) \)).

When computing Monte-Carlo Greeks, instead of simulating $K^E(\theta_B)$ directly from E^B, we can evolve $K^Q(\theta_B)$ using Q^B (i.e. Q with a vector of perturbed inputs θ_B) given by

\[
\begin{align*}
K_i^Q(\theta_B) &= K_i^E(\theta_B), \\
K_{i+1}^Q(\theta_B) &= F_i(K_{i}^Q(\theta_B), Z_{i+1} - \nu_{i+1}^Q(\theta_B, Z_{i+1}, \theta_B)).
\end{align*}
\]

(3.3)

Specifically, we evolve the processes $K_i^Q(\theta_B)$ and $K_i^E(\theta_0)$ simultaneously using a common Z. At each step of the simulation, the value of $\nu_{i+1}^Q(\theta_B, Z_{i+1})$ is chosen so that the realizations of $K_{i+1}^Q(\theta_B)$ and $K_{i+1}^E(\theta_0)$ will not result in pathwise discontinuities. As pathwise discontinuities are eliminated, the Monte-Carlo Greeks obtained by applying finite differences to the weighted prices from Q^B and E^0 will have much lower variance and stable Monte-Carlo Greeks can be obtained. Note that, an important observation is that, by construction, pricing under E_θ with w_ν have the same properties described above. They only differ in how the solution for the mean-shift is restricted. In general, all these schemes have the same properties described above. They only differ in how the solution for the mean-shift $\nu_i^Q(\theta_B, Z_i)$ is selected. In this paper, we focus on the partial proxy simulation scheme, P, and the minimal partial proxy simulation scheme, M.

3.2. The Partial Proxy Simulation Scheme. In this section, we will replace Q with P to indicate that we are working with the partial proxy simulation scheme. The partial proxy simulation scheme, P, was introduced by Fries and Joshi (2008b). They define a proxy constraint function p_i,\(^1\)

$$p_i : \mathbb{R}^n \rightarrow \mathbb{R},$$

where p_i represents the quantity that will give raise to pathwise discontinuities at t_i. Typically in financial applications, the proxy constraint function, p_i, will be either a swap-rate or a forward-rate on reset. In order to prevent pathwise discontinuities, the scheme P^B (i.e P with a vector of perturbed inputs θ_B) is constructed by selecting $\nu_i^P(\theta_B, Z_i)$ such that for any given path, we have

$$p_i(K_i^P(\theta_B)) = p_i(K_i^E(\theta_0))$$

(3.4)

for each i. This ensures that the quantity that gives rise to pathwise discontinuities are the same under P^B and E^0 at each t_i and hence, pathwise discontinuities are eliminated.

In general, equation (3.4) alone will not uniquely determine the solution for $\nu_i^P(\theta_B, Z_i)$ as $\nu_i^P(\theta_B, Z_i)$ is a d-dimensional vector. One possible solution suggested by Fries and Joshi is that they restrict the solution of $\nu_i^P(\theta_B, Z_i)$ to the following form:

\(^1\)Here, we focus on the case where $p_i : \mathbb{R}^n \rightarrow \mathbb{R}$. In Fries and Joshi (2008b), they defined $p_i : \mathbb{R}^n \rightarrow \mathbb{R}^k$ with $k < n$.

6
where the index s denotes the s^{th} element in $\nu^P_i(\theta_B, Z_i)$. This makes solving for $\nu^P_i(\theta_B, Z_i)$ straightforward. As the mean-shift is applied only to $Z_{i,1}$ (i.e. the first factor), we require that

$$\frac{\partial p_i(K^P_i(\theta_B))}{\partial Z_{i,1}} = \frac{\partial p_i(K^P_i(\theta_B))}{\partial K^P_i(\theta_B)} \frac{\partial K^P_i(\theta_B)}{\partial Z_{i,1}} \neq 0,$$

where

$$\frac{\partial K^P_i(\theta_B)}{\partial Z_{i,1}} = (a_{11}(K^P_{i-1}(\theta_B), \theta_B, t_{i-1}), \ldots, a_{n1}(K^P_{i-1}(\theta_B), \theta_B, t_{i-1}))^T,$$

$$\frac{\partial p_i(K^P_i(\theta_B))}{\partial K^P_i(\theta_B)} = \begin{pmatrix} \frac{\partial p_i}{\partial K^P_{i,1}} & \frac{\partial p_i}{\partial K^P_{i,2}} & \cdots & \frac{\partial p_i}{\partial K^P_{i,n}} \end{pmatrix} \neq 0.$$

Since $\frac{\partial K^P_i(\theta_B)}{\partial Z_{i,1}}$ depends on the first column of $A(K^E_{i-1}(\theta_B), \theta_B, t_{i-1})$ and many different pseudo-square roots exist, satisfying the requirement (3.5) is trivial as long as we select the pseudo-square root for the simulation sensibly. In general, the variance of the Monte-Carlo Greeks obtained under the partial proxy scheme can be further reduced by using $A(K^E_{i-1}(\theta_B), \theta_B, t_{i-1})$ such that

$$\left| \frac{\partial p_i(K^P_i(\theta_B))}{\partial Z_{i,1}} \right|$$

is maximized. Under the setup above, the Monte-Carlo weight, $w^P_i(\theta_B)$, is given by

$$w^P_i(\theta_B) = \left(1 - \frac{\partial \nu^P_{i,1}(\theta_B, Z_i)}{\partial Z_{i,1}} \right) \exp \left(Z_{i,1} \nu^P_{i,1}(\theta_B, Z_i) - \frac{1}{2} \nu^P_{i,1}(\theta_B, Z_i)^2 \right),$$

from Proposition 1. As all the $Z_{i,s}$’s are independent and based on the restriction imposed on the solution for $\nu^P_i(\theta_B, Z_i)$, we clearly have

$$\det \left(\frac{\partial Z_i}{\partial Z_i} \right) = \left(1 - \frac{\partial \nu^P_{i,1}(\theta_B, Z_i)}{\partial Z_{i,1}} \right), \quad \frac{\phi^*(\tilde{Z}_i)}{\phi^*(Z_i)} = \prod_{i=1}^{F} \frac{\phi(\tilde{Z}_{i,1})}{\phi(Z_{i,1})} = \frac{\phi(\tilde{Z}_{i,1})}{\phi(Z_{i,1})},$$

where ϕ is the density function of the normal distribution.

3.3. The Minimal Partial Proxy Simulation Scheme.

The minimal partial proxy simulation scheme was introduced by Chan and Joshi (2009). The essential idea of the minimal partial proxy simulation scheme is that the measure change at each time step is selected optimally such that it minimises the variance of the Monte-Carlo weights. This idea is driven by the fact that a naive measure change may result in an unstable Monte-Carlo weight (i.e sensitive to the outcome of Z) and hence increase the variance of the Monte-Carlo Greeks (Glasserman, 2003). In order to do so, a weaker constraint is made. In particular, we no longer select the proxy constraint to make $p_i(K_i(\theta_B))$ equals to $p_i(K_i(\theta_0))$ but instead make the weaker requirement that both $p_i(K_i(\theta_B))$ and $p_i(K_i(\theta_0))$ are on the same side of the discontinuity for all i. This yields an extra degree of freedom and so we are able to selected the measure change which minimizes the variance of the Monte-Carlo weight across the step.

The minimal partial proxy simulation scheme presented by Chan and Joshi (2009) focuses on a special case of the proxy constraint functions: a linear proxy constraint. Here, we will present a
generalized version of the minimal partial proxy simulation scheme. In particular, we extend the ideas from Chan and Joshi (2009) to cases with non-linear proxy constraint, and hence, the minimal partial proxy simulation scheme can now be applied to a larger class of financial products.

3.3.1. Financial Product Specification. Consider a financial product which depends on the underlying quantities K at t_1, t_2, \ldots, t_m and pays a sequence of cash-flows C_i at time t_i. We assume that C_i is \mathcal{F}_{t_i}-measurable and is a continuous function of the inputs. We shall say that the product triggers at time t_i if some event E_i occurs such that a rebate R_i (\mathcal{F}_{t_i}-measurable) is received and no further cash flows are received.

Under the generalized minimal partial proxy simulation scheme, we require E_i to be defined as

$$p_i(K_i(\theta)) > H_i(\theta),$$

for some $\mathcal{F}_{t_{i-1}}$-measurable trigger level, $H_i(\theta)$, and p_i is the proxy constraint function. Although, this is a restrictive requirement on how the event E_i has to be defined, many path-dependent trigger products can be rewritten in the above form as $H_i(\theta)$ is an $\mathcal{F}_{t_{i-1}}$-measurable function.

3.3.2. Construction of the Minimal Partial Proxy Simulation Scheme. We let M be the minimal partial proxy simulation scheme. The essential difference from the partial proxy simulation scheme is that here, we pick the measure change in an optimal way. In particular, given a vector of perturbed inputs θ_B, we restrict the solution of $\nu_i^M(\theta_B, Z_i)$ to the following form

$$\nu_i^M(\theta_B, Z_i) = (1 - \alpha_{i,1}^M(\theta_B))Z_i - \beta_{i,1}^M(\theta_B)$$

for $s = 2, \ldots, d$ with $\alpha_{i,1}^M(\theta_B)$ and $\beta_{i,1}^M(\theta_B)$ independent of Z_i. The numerical scheme, M_B, is then constructed by selecting $\nu_i^M(\theta_B, Z_i)$ such that the following 2 conditions are satisfied,

1. $p_i(K_i^E(\theta_0)) > H_i^E(\theta_0) \iff p_i(K_i^M(\theta_B)) > H_i^M(\theta_B)$,
2. minimises the variance of the Monte-Carlo weight across that step.

Similar to the partial proxy simulation scheme, we also require

$$\frac{\partial p_i(K_i^M(\theta_B))}{\partial Z_i} \neq 0$$

and the Monte-Carlo weight is given by

$$w_i^M(\theta_B) = \alpha_{i,1}^M(\theta_B) \exp \left(Z_{i,1} \nu_{i,1}^M(\theta_B, Z_i) - \frac{1}{2} \nu_{i,1}^M(\theta_B, Z_i)^2 \right),$$

from Proposition 1.

3.3.3. Eliminating Pathwise Discontinuities. Condition (1) ensures that pathwise discontinuities are eliminated at t_i. However, solving for $\nu_i^M(\theta_B)$ (i.e $\alpha_{i,1}^M(\theta_B, Z_i)$ and $\beta_{i,1}^M(\theta_B)$) such that condition (1) holds can be complicated as at each time step, both numerical schemes (i.e M_B and E^0) are driven by d standard normal random variables.

\footnote{For cases where E_i is defined as $p_i < H_i$, the following results will still hold by taking the negative of p_i and $H(t_i)$.}
Here, we will assume that we observe the realization of
\[Z_{i,s} \quad \text{for} \quad s = 2, 3, \ldots, d \]
before \(Z_{i,1} \). The advantage of making such assumption is that once we know the realization of \(Z_{i,s} \) for \(s = 2, 3, \ldots, d \), both
\[p_i(K^E_i(\theta_0)) \quad \text{and} \quad p_i(K^M_i(\theta_B)) \]
in condition (1) will only depend on \(Z_{i,1} \). We will also assume that the proxy constraint function, \(p_i \), is a monotone increasing function of \(Z_{i,1} \).

Definition 2. We define \(Z^*_{i,1} \) to be the critical point such that
\[p_i(K^E_i(\theta_0)) > H^E_i(\theta_0) \iff Z_{i,1} > Z^*_{i,1}. \]
In other words, the financial product priced under \(E^0 \) will trigger if and only if \(Z_{i,1} > Z^*_{i,1} \).

Proposition 2. The solution for \(Z^*_{i,1} \) must satisfy the following equation
\[p_i(\hat{K}^E_i(\theta_0)) = H^E_i(\theta_0), \tag{3.8} \]
where
\[\hat{K}^E_i(\theta_0) := F_{i-1}(K^E_{i-1}(\theta_0), \hat{Z}_i, \theta_0) \tag{3.9} \]
with the elements of \(\hat{Z}_i \) given by
\[\hat{Z}_{i,1} = Z^*_{i,1}, \]
\[\hat{Z}_{i,s} = Z_{i,s} \quad \text{for} \quad s = 2, \ldots, d. \]

Proof. The result in Proposition 2 clearly holds based on the definition of \(Z^*_{i,1} \) and the definition of \(\hat{K}^E_i(\theta_0) \) in equation (3.9). \(\square \)

In general, once the exact form of the proxy constraint function, \(p_i \), is known, solving for \(Z^*_{i,1} \) is straight-forward as \(p_i(K^E_i(\theta_0)) \) is a function of \(Z_{i,1} \) and the value of \(Z_{i,1} \) which results in
\[p_i(K^E_i(\theta_0)) = H^E_i(\theta_0) \]
will be the critical point \(Z^*_{i,1} \). For cases where the proxy constraint function \(p_i \) is non-linear, a numerical root search is usually required to solve for \(Z^*_{i,1} \). Summarizing,

Proposition 3. Based on the assumptions above, condition (1) is satisfied as long as the solutions for \(\alpha^M_{i,1}(\theta_B) \) and \(\beta^M_{i,1}(\theta_B) \) are chosen such that the following equation holds
\[p_i(\hat{K}^M_i(\theta_B)) = H^M_i(\theta_B), \tag{3.10} \]
where
\[\hat{K}^M_i(\theta_B) := F_{i-1}(K^M_{i-1}(\theta_B), \hat{Z}_i - \nu^M_{i}(\theta_B, \hat{Z}_i, \theta_B)) \tag{3.11} \]

\(^3 \)For cases where the proxy constraint function, \(p_i \), is a monotone decreasing function of \(Z_{i,1} \), the same final result can be obtained using the same argument presented in this section.
with the elements of \(\tilde{Z}_i \) given by
\[
\begin{align*}
\tilde{Z}_{i,1} &= Z^*_{i,1} \\
\tilde{Z}_{i,s} &= Z_{i,s} \quad \text{for} \quad s = 2, \ldots, d
\end{align*}
\]
and
\[
\begin{align*}
\nu^M_{i,1}(\theta_B, \tilde{Z}_i) &= (1 - \alpha^M_{i,1}(\theta_B))Z^*_{i,1} - \beta^M_{i,1}(\theta_B), \\
\nu^M_{i,s}(\theta_B, \tilde{Z}_i) &= 0 \quad \text{for} \quad s = 2, \ldots, d.
\end{align*}
\]

3.3.4. Linearization of Proxy Constraints.
For non-linear proxy constraint function, \(p_i \), the numerical implementation of the minimal partial proxy simulation scheme can be expensive. This is because at each time step, we must solve for \(Z^*_{i,1} \) such that equation (3.8) holds and both \(\alpha^M_{i,1}(\theta_B) \) and \(\beta^M_{i,1}(\theta_B) \) such that equation (3.10) is satisfied. For efficient practical application, we may linearize the proxy constraint function in equation (3.8) and (3.10). We define
\[
\begin{align*}
\tilde{K}^E_i(\theta_0) &:= F_{i-1}(K^E_{i-1}(\theta_0), \tilde{Z}_i, \theta_0), \\
\tilde{K}^M_i(\theta_B) &:= F_{i-1}(K^M_{i-1}(\theta_B), \tilde{Z}_i, \theta_B),
\end{align*}
\]
with the elements in \(\tilde{Z}_i \) given by
\[
\begin{align*}
\tilde{Z}_{i,1} &= 0 \\
\tilde{Z}_{i,s} &= Z_{i,s} \quad \text{for} \quad s = 2, \ldots, d.
\end{align*}
\]
Note that, equation (3.12) and (3.13) can be rewritten as
\[
\begin{align*}
\tilde{K}^E_i(\theta_0) &= \tilde{K}^E_i(\theta_0) - Z^*_{i,1}S_{i-1}(K^E_{i-1}(\theta_0), \theta_0) \\
\tilde{K}^M_i(\theta_B) &= \tilde{K}^M_i(\theta_B) - (\alpha^M_{i,1}(\theta_B)Z^*_{i,1} + \beta^M_{i,1}(\theta_B))S_{i-1}(K^M_{i-1}(\theta_B), \theta_B)
\end{align*}
\]
where \(S_i(K_i(\theta), \theta) := (a_{11}(K_i(\theta), \theta, t_i), \ldots, a_{n1}(K_i(\theta), \theta, t_i))^T \).

Proposition 4. By linearizing the proxy constraint function in equation (3.8) around \(\tilde{K}^E_i(\theta_0) \), the approximation for \(Z^*_{i,1} \) is given by
\[
\frac{H^E_i(\theta_0) - p_i(\tilde{K}^E_i(\theta_0))}{\nabla p_i(\tilde{K}^E_i(\theta_0)) \cdot S_{i-1}(K^E_{i-1}(\theta_0), \theta_0)}.
\]
assuming that
\[
\nabla p_i(\tilde{K}^E_i(\theta_0)) \cdot S_{i-1}(K^E_{i-1}(\theta_0), \theta_0) \neq 0.
\]

Proof. We have
\[
p_i(\tilde{K}^E_i(\theta_0)) + \nabla p_i(\tilde{K}^E_i(\theta_0)) \left(\tilde{K}^E_i(\theta_0) - \tilde{K}^E_i(\theta_0) \right) = H^E_i(\theta_0).
\]
from linearizing the equation (3.8) around \(\tilde{K}^E_i(\theta_0) \) and by substituting (3.14) into the equation above, the result in Proposition 4 clearly holds.

Proposition 5. By linearizing the proxy constraint function in equation (3.10) around \(\tilde{K}^E_i(\theta_0) \), the solutions of \(\alpha^M_{i,1}(\theta_B) \) and \(\beta^M_{i,1}(\theta_B) \) must satisfy
\[
\beta^M_{i,1}(\theta_B) = X^M_{i,1}(\theta_B) - \alpha^M_{i,1}(\theta_B)Z^*_{i,1}
\]
to prevent pathwise discontinuities, where

\[
X_{i,1}^M(\theta_B) = \frac{H_i^M(\theta_B) - H_i^E(\theta_0) - \nabla p_i(\hat{K}^E_i(\theta_0)) \cdot (\hat{K}^M_i(\theta_B) - \hat{K}^E_i(\theta_0))}{\nabla p_i(\hat{K}^E_i(\theta_0)) \cdot S_i(\hat{K}^M_{i-1}(\theta_B), \theta_B)} ,
\]

(3.18)

again assuming that

\[
\nabla p_i(\hat{K}^E_i(\theta_0)) \cdot S_i(\hat{K}^M_{i-1}(\theta_B), \theta_B) \neq 0.
\]

Proof. Linearizing the equation (3.10) around \(\hat{K}^E_i(\theta_0) \) gives

\[
p_i(\hat{K}^E_i(\theta_0)) + \nabla p_i(\hat{K}^E_i(\theta_0)) \cdot (\hat{K}^M_i(\theta_B) - \hat{K}^E_i(\theta_0)) = H_i^M(\theta_B).
\]

(3.19)

with

\[
p_i(\hat{K}^E_i(\theta_0)) = H_i^E(\theta_0).
\]

By rearranging (3.19) and using the result from (3.15), the result in Proposition 5 clearly holds. \(\square \)

Note that, equation (3.17) can also be written as

\[
X_{i,1}^M(\theta_B) = \alpha_{i,1}^M(\theta_B)Z_{i,1}^* + \beta_{i,1}^M(\theta_B).
\]

(3.20)

Observe that, once we have linearized the proxy constraint function, condition (1) will not longer hold with probability of 1. That is, we might still have pathwise discontinuities. However, the probability of such events occurring is close to zero for 2 reasons. The first reason is that we have the flexibility to select the proxy constraint function. As long as the proxy constraint function is selected such that the effect of higher order derivatives is insignificant compared to the first order derivative, then our approximation for \(Z_{i,1} \) using equation (3.16) will be adequate. For example, instead of using a CMS swap-rate as our proxy constraint function, we can use its log. The second reason is that the perturbed inputs \(\theta_B \) are, in general, close to the base inputs \(\theta_0 \). Hence we will also have that \(\hat{K}^M_i(\theta_B) \) is close to \(\hat{K}^E_i(\theta_0) \). Therefore, approximating \(p_i(\hat{K}^M_i(\theta_B)) \) in equation (3.10) up to the first order term at \(\hat{K}^E_i(\theta_0) \) will be sufficiently good.

3.3.5. Minimising the Variance of the Monte-Carlo Weight. Based on the linearized proxy constraint function, solutions for \(\alpha_{i,1}^M(\theta_B) \) and \(\beta_{i,1}^M(\theta_B) \) are selected dynamically to ensure that the condition (2) holds. Observe that, if the probability of the product triggering at next time step is close to 0 or 1, the trigger effectively does not exist and there are no pathwise discontinuities. Under such scenarios, no measure change needs to be performed as performing a measure change will generally increase the variance of the Monte Carlo Greeks. Therefore, whenever \(|Z_{i,1}^*| \) is greater than 4 (i.e four standard deviations\(^4 \)), we set \(\alpha_{i,1}^M(\theta_B) = 1 \) and \(\beta_{i,1}^M(\theta_B) = 0 \) (i.e no measure change) and we have zero variance for the Monte-Carlo weight.

Otherwise, \(\alpha_{i,1}^M(\theta_B) \) is selected such that it minimises the variance of the Monte-Carlo weight and the solution for \(\beta_{i,1}^M(\theta_B) \) is determined based on the equation (3.17) to prevent pathwise discontinuities. It turns out that \(\alpha_{i,1}^M(\theta_B) \) which minimizes the variance of the Monte-Carlo weight satisfies

\(^4 \)Chan and Joshi (2009) suggested that no measure change is required if we are 6 standard deviations away from triggering or not triggering. However, based on further numerical tests, we conclude that, by using 4 standard deviations instead of 6, the variance of Greeks can be further reduced without resulting pathwise discontinuities.
the following equation \(^5\) (see Chan and Joshi, 2009)
\[
a \alpha^4 + b \alpha^3 + c \alpha^2 + d \alpha + e = 0,
\]
(3.21)

where
\[
a = 2, \quad b = 2 \cdot X_{i,1}^M(\theta_B) Z_{i,1}^*, \quad c = -(3 + 2 X_{i,1}^M(\theta_B)^2 + Z_{i,1}^*), \quad d = X_{i,1}^M(\theta_B) Z_{i,1}^*, \quad e = 1,
\]
with \(\alpha = \alpha_{i,1}^M(\theta_B)\) and \(X_{i,1}^M(\theta_B)\) as defined in equation (3.18). Four distinct real roots always exist for equation (3.21), only one real root is greater than \(\frac{1}{\sqrt{2}}\) and this root is the solution for \(\alpha_{i,1}^M(\theta_B)\) which minimises the variance of the Monte-Carlo weight. The derivations and the proofs of these results were given by Chan and Joshi (2009). As closed form solutions exist for the roots of a 4\(^{th}\) order polynomial, there is no need to perform a numerical root search, hence adopting our approach to calculating Monte-Carlo Greeks will not increase the computational time substantially and, at the same time, we can potentially achieve a significant variance reduction for Monte-Carlo Greeks (see, Chan and Joshi 2009). In section 6.2, we will also show that, under the pathwise approach, we no longer have to solve this 4\(^{th}\) order polynomial.

4. EXPECTATION OF PATHWISE DERIVATIVES - UNBIASED ESTIMATORS OF GREEKS

In this section, we show that under the quasi mean-shifted proxy simulation schemes, \(Q\), we can interchange differentiation and expectation when computing price sensitivities. Hence, price sensitivities can be obtained by evaluating the expectation of the pathwise derivative and this result holds even for financial products with discontinuous pay-off functions.

Suppose we have a smooth family of discretizations of the evolution of the state variables \(K(\theta)\) with \(\theta\) being a vector of inputs. We define \(g(K(\theta))\) to be the deflated cash-flow generated by a financial product based on the realization of \(K(\theta)\) and define \(W(\theta)\) to be the accumulated Monte-Carlo weight. Note that, under Euler discretization scheme, \(W(\theta)\) is equal to 1 for \(\theta \in \Theta\). Therefore, the price of the financial product is \(\mathbb{E}[W(\theta)g(K(\theta))]\), and the price sensitivity with respect to \(\theta\) in the direction of \(\mathbf{u}\), is given by
\[
D_u \mathbb{E}[W(\theta)g(K(\theta))] = \lim_{h \to 0} \mathbb{E} \left[\frac{W(\theta + hu)g(K(\theta + hu)) - W(\theta)g(K(\theta))}{h} \right].
\]
(4.1)

We adapt a result from Glasserman 2003.

Theorem 1. The limit and the expectation in equation (4.1) can be interchanged i.e.
\[
D_u \mathbb{E}[W(\theta)g(K(\theta))] = \lim_{h \to 0} \mathbb{E} \left[\frac{W(\theta + hu)g(K(\theta + hu)) - W(\theta)g(K(\theta))}{h} \right] = \mathbb{E} \left[\lim_{h \to 0} \frac{W(\theta + hu)g(K(\theta + hu)) - W(\theta)g(K(\theta))}{h} \right] = \left\langle \mathbb{E} \left[\frac{\partial (W(\theta)g(K(\theta)))}{\partial \theta} \right], u \right\rangle
\]
(4.2)

as long as the following conditions are satisfied:

\(^5\)The equation presented here is slightly different from the equation presented in Chan and Joshi (2009). In Chan and Joshi (2009), the equation is derived based on a numerical scheme driven by uncorrelated Brownian increments, while here, it is derived based on a numerical scheme driven by uncorrelated standard normal random variables.
(1) At each \(\theta \in \Theta \), the derivative of \(K_{i,j}(\theta) \) in the direction of \(u \) exists with probability 1 for all \(i \) and \(j \).

(2) At each \(\theta \in \Theta \), the derivative of \(W(\theta) \) in the direction of \(u \) exists with probability 1.

(3) \(P(K(\theta) \in D_g) = 1 \) where \(D_g \) denotes the points where \(g \) is differentiable.

(4) For any given vector of \(Z \), there exists a constant \(C_g \) such that,

\[
|g(K(\theta_2)) - g(K(\theta_1))| \leq C_g ||K(\theta_2) - K(\theta_1)||
\]

where \(\theta_1, \theta_2 \in \Theta \).

(5) For any given vector of \(Z \), there exists a constant \(C_{i,j} \) such that

\[
|K_{i,j}(\theta_2) - K_{i,j}(\theta_1)| \leq C_{i,j} ||\theta_2 - \theta_1||
\]

for all \(i \) and \(j \) and \(\theta_1, \theta_2 \in \Theta \).

(6) For any given vector of \(Z \), there exists a constant \(C_w \), such that

\[
|W(\theta_2) - W(\theta_1)| \leq C_w ||\theta_2 - \theta_1||
\]

Proof. The conditions (1), (2) and (3) ensure that

\[
\lim_{h \to 0} \frac{W(\theta + hu)g(K(\theta + hu)) - W(\theta)g(K(\theta))}{h}
\]

exists with probability 1 for \(\theta \in \Theta \), while the conditions (4), (5) and (6) ensures that, for any given vector of \(Z \), \(W(\theta)g(K(\theta)) \) is Lipschitz in \(\theta \) as the Lipschitz property is preserved under composition. Therefore, we can now apply the Dominated Convergence theorem to interchange the limit and the expectation in equation (4.1) and conclude that Theorem 1 holds. \(\square \)

Provided that all the conditions above are satisfied, price sensitivities can be obtained by evaluating the expectation of the pathwise derivative

\[
\mathbb{E} \left[\frac{\partial(W(\theta)g(K(\theta)))}{\partial \theta} \right]
\]

and this approach is known as the pathwise method (see, Glasserman 2003). The pathwise method, in general, is not applicable to financial product with discontinuous pay-offs as condition (4) does not hold. However, under the quasi mean-shifted proxy simulation schemes, \(Q \), price sensitivities can be evaluated using the pathwise approach even for financial products with discontinuous pay-offs. By construction of \(Q \), for any given vector \(Z \), the pay-off function is a smooth function of inputs \(\theta \). Therefore, we have \(g(K^Q(\theta)) \) Lipschitz in \(\theta \) for any given vector \(Z \). The accumulated Monte-Carlo weight under \(Q \) is also Lipschitz in \(\theta \) as \(W^Q(\theta) \) is the product of the ratio of joint normal density functions which are smooth functions. Therefore, \(W^Q(\theta)g(K^Q(\theta)) \) is also Lipschitz in \(\theta \) for any given vector \(Z \). The major advantage for being able to apply the pathwise method to \(Q \), is that we can now compute price sensitivities with respect to all inputs simultaneously even for financial products with discontinuous pay-offs whereas previously, such methods could only be applied to products with continuous pay-off functions.

Note that, one obvious consequence of linearizing the proxy constraint function is that the condition (4) will no longer hold with probability of 1. Therefore, price sensitivities evaluated using
the pathwise method can be biased. However, our numerical results in section 10 show that such bias is insignificant using the linearization method proposed in this paper.

5. Derivation of Pathwise Derivatives

In this section, we derive the pathwise derivative for the partial proxy simulation scheme, P and the minimal partial proxy simulation scheme, M. In particular, we assume that we are interested in computing the pathwise derivative with respect to a vector of initial inputs, θ_0, for a financial contract, D. The financial contract, D, pays a stream of cash-flow at times that are a subset of $t_1 < t_2 < \ldots < t_m$: The cash-flows at time t_i are an \mathcal{F}_{t_i}-measurable function. We define

$$g(K^1_A(\theta), K^2_A(\theta), \ldots, K^m_A(\theta))$$

to be the accumulated deflated cash-flows generated by D from t_1 up to t_m based on the realization of $K(\theta)$ under a numerical scheme A. For convenience, we write

$$g^A(\theta) \equiv g(K^1_A(\theta), K^2_A(\theta), \ldots, K^m_A(\theta)).$$

Since θ is a vector of inputs, we will therefore have a vector of price sensitivities (i.e. corresponding to each element in θ). For clarity of notation, θ is assumed to be an r-dimensional vector with the j^{th} element given by θ_j. Suppose that B_i denotes an n-dimensional vector at time t_i with the j^{th} element given by $B_{i,j}$, we define

$$\frac{\partial B_i}{\partial \theta} = \begin{pmatrix} \frac{\partial B_{i,1}}{\partial \theta_1} & \cdots & \frac{\partial B_{i,1}}{\partial \theta_r} \\ \vdots & \ddots & \vdots \\ \frac{\partial B_{i,n}}{\partial \theta_1} & \cdots & \frac{\partial B_{i,n}}{\partial \theta_r} \end{pmatrix}$$

to be an $n \times r$ matrix and

$$\frac{\partial B_{i,j}}{\partial \theta} = \begin{pmatrix} \frac{\partial B_{i,j}}{\partial \theta_1} \\ \frac{\partial B_{i,j}}{\partial \theta_2} \\ \vdots \\ \frac{\partial B_{i,j}}{\partial \theta_r} \end{pmatrix}$$

to be an r-dimensional row vector. Therefore, the pathwise derivative is given by an r-dimensional row vector with the j^{th} element corresponding to the pathwise price sensitivity with respect to θ_j.

Proposition 6. Under the partial proxy simulation scheme, the pathwise derivative with respect to θ_0 for the financial contract D is given by

$$\sum_{i=1}^{m} \left[\frac{\partial g^P(\theta) \partial K^P_i(\theta)}{\partial \theta} + g^P(\theta) \left(Z_{i,1} \frac{\partial \nu^P_{i,1}(\theta, Z_i)}{\partial \theta} - \frac{\partial}{\partial \theta} \left(\frac{\partial \nu^P_{i,1}(\theta, Z_i)}{\partial Z_{i,1}} \right) \right) \right] \bigg|_{\theta=\theta_0} \quad (5.1)$$

Proof. Given the inputs θ, the price of the financial contract, D, is given by

$$\mathbb{E} \left[g^P(\theta) \prod_{i=1}^{m} w^P_i(\theta) \right].$$

(5.2)
Differentiating the inner expression of the expectation with respect to θ at θ_0 gives
\[
\left[\frac{\partial g^P(\theta)}{\partial \theta} \prod_{i=1}^{m} w_i^P(\theta) + g^P(\theta) \prod_{i=1}^{m} w_i^P(\theta) \left(\sum_{i=1}^{m} \frac{1}{w_i^P(\theta)} \frac{\partial w_i^P(\theta)}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0}
\]
\[
= \left[\frac{\partial g^P(\theta)}{\partial \theta} + g^P(\theta) \sum_{i=1}^{m} \frac{\partial \log w_i^P(\theta)}{\partial \theta} \right] \bigg|_{\theta=\theta_0}
\]
\[
= \sum_{i=1}^{m} \left[\frac{\partial g^P(\theta)}{\partial K_i^P} \frac{\partial K_i^P(\theta)}{\partial \theta} + g^P(\theta) \left(Z_{i,1} \frac{\partial \nu_{i,1}^P(\theta, Z_i)}{\partial \theta} - \frac{\partial}{\partial \theta} \left(\frac{\partial \nu_{i,1}^P(\theta, Z_i)}{\partial Z_{i,1}} \right) \right) \right] \bigg|_{\theta=\theta_0}
\]
as, by construction, we have
\[
\nu_{i,1}^P(\theta_0, Z_i) = 0, \quad w_i^P(\theta_0) = 1, \quad \text{and} \quad \left. \frac{\partial \nu_{i,1}^P(\theta, Z_i)}{\partial Z_{i,1}} \right|_{\theta=\theta_0} = 0. \quad (5.3)
\]

Proposition 7. Under the minimal partial proxy simulation scheme, the pathwise derivative with respect to θ_0 for the financial contract D is given by
\[
\sum_{i=1}^{m} \left[\frac{\partial g^M(\theta)}{\partial K_i^M} \frac{\partial K_i^M(\theta)}{\partial \theta} + g^M(\theta) \left(Z_{i,1} \frac{\partial \nu_{i,1}^M(\theta, Z_i)}{\partial \theta} + \frac{\partial \alpha_{i,1}^M(\theta)}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0} \quad (5.4)
\]

Procedure. Given a vector of inputs θ, the price of the financial contract, D, is given by
\[
\mathbb{E} \left[g^M(\theta) \prod_{i=1}^{m} w_i^M(\theta) \right]. \quad (5.5)
\]
By differentiating the inner expression of the expectation with respect to θ at θ_0, we get
\[
\left[\frac{\partial g^M(\theta)}{\partial \theta} \prod_{i=1}^{m} w_i^M(\theta) + g^M(\theta) \prod_{i=1}^{m} w_i^M(\theta) \left(\sum_{i=1}^{m} \frac{1}{w_i^M(\theta)} \frac{\partial w_i^M(\theta)}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0}
\]
\[
= \sum_{i=1}^{m} \left[\frac{\partial g^M(\theta)}{\partial K_i^M} \frac{\partial K_i^M(\theta)}{\partial \theta} + g^M(\theta) \left(Z_{i,1} \frac{\partial \nu_{i,1}^M(\theta, Z_i)}{\partial \theta} + \frac{\partial \alpha_{i,1}^M(\theta)}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0}
\]
as we know that
\[
\alpha_{i,1}^M(\theta_0) = 1, \quad \text{and} \quad \nu_{i,1}^M(\theta_0, Z_i) = 0. \quad \square
\]

6. Evaluating Pathwise Derivatives - A Naive Approach

In this section, we present a naive algorithm to evaluate the pathwise derivative derived in the previous section. Under this approach, the partial derivatives in equation (5.1) and (5.4) are calculated using matrix recursions as we evolve the state variables, K. The major problem with matrix recursions is that for a large number of inputs and state variables, the computational cost can be very high as we have to perform matrix multiplications at each step of the simulation. For example, suppose that θ_0 is an n-dimensional vector (e.g., initial forward rates) and we have n state variables, the computational order will be at least $O(n^3)$ per step. Whilst this approach is
inefficient, especially when we have a large number of inputs and state variables, we still provide detailed explanations on its implementation, since we will see in sections 7 and 8 that the results shown in this section are important for developing more efficient methods of computation.

6.1. Evaluating Partial Proxy Pathwise Derivatives - a Naive Approach. In order to compute the partial proxy pathwise derivative in (5.1), we have to compute

\[
\frac{\partial g^P(\theta)}{\partial K^P_i} \bigg|_{\theta=\theta_0}, \quad \frac{\partial K^P_i}{\partial \theta} \bigg|_{\theta=\theta_0}, \quad \frac{\partial \nu^P_{i,1}(\theta, Z_i)}{\partial \theta} \bigg|_{\theta=\theta_0} \quad \text{and} \quad \frac{\partial}{\partial \theta} \left(\frac{\partial \nu^P_{i,1}(\theta, Z_i)}{\partial Z_{i,1}} \right) \bigg|_{\theta=\theta_0},
\]

(6.1)

6.1.1. Computation of \(\frac{\partial g^P}{\partial K^P_i} \). Evaluating \(\frac{\partial g^P}{\partial K^P_i} \) is straightforward and it can be done easily by differentiating the deflated pay-offs with respect to \(K^P_i \).

6.1.2. Computation of \(\frac{\partial K^P_i}{\partial \theta} \). Based on the setup of the partial proxy simulation scheme, we have

\[
\frac{\partial K^P_i}{\partial \theta} = \frac{\partial K^P_i}{\partial K^P_{i-1}} \frac{\partial K^P_{i-1}}{\partial \theta} - \frac{\partial K^P_i}{\partial Z_{i,1}} \frac{\partial \nu^P_{i,1}}{\partial \theta} + \frac{\partial F_{i-1}}{\partial \theta},
\]

(6.2)

6.1.3. Computation of \(\frac{\partial \nu^P_{i,1}}{\partial \theta} \). Suppose that the perturbed inputs \(\theta_B \), are given by

\[
\theta_B = \theta_0 + hu
\]

where \(u \) is a directional vector and \(h > 0 \), the partial proxy simulation scheme requires the solution of \(\nu^P_{i,1}(\theta_B, Z_i) \) to satisfy equation (3.4), i.e.

\[
p_i(K^P_i(\theta_B)) = p_i(K^P_i(\theta_0))
\]

(6.3)

for all \(i \) to prevent pathwise discontinuities. Using Taylor’s theorem, we have

\[
p_i(K^P_i(\theta_0)) + \nabla (p_i \circ K^P_i)(\theta_0) h u + O(h^2) = p_i(K^P_i(\theta_0)),
\]

(6.4)

and taking the coefficient of \(h \) gives

\[

\nabla (p_i \circ K^P_i)(\theta_0) \cdot u = 0.
\]

(6.5)

Given that this result must hold for any arbitrary directional vector, \(u \), we must therefore have

\[

\left[\frac{\partial p_i}{\partial K^P_i} \frac{\partial K^P_i}{\partial \theta} \right]_{\theta=\theta_0} = 0.
\]

(6.6)

By substituting (6.2) into the equation above and rearranging, we have

\[
\frac{\partial \nu^P_{i,1}}{\partial \theta} \bigg|_{\theta=\theta_0} = \left[\left(\frac{\partial p_i}{\partial K^P_i} \frac{\partial K^P_i}{\partial \theta} \right) \frac{\partial K^P_i}{\partial \theta} - \frac{\partial K^P_i}{\partial Z_{i,1}} \frac{\partial \nu^P_{i,1}}{\partial \theta} + \frac{\partial F_{i-1}}{\partial \theta} \right] \bigg|_{\theta=\theta_0}.
\]

(6.7)

6.1.4. Computation of \(\frac{\partial}{\partial \theta} \left(\frac{\partial \nu^P_{i,1}}{\partial Z_{i,1}} \right) \). Differentiating equation (6.3) with respect to \(Z_{i,1} \) gives

\[
q_i(\theta_B)(1 - r_i(\theta_B)) = q_i(\theta_0).
\]

(6.8)
where
\[q_i(\theta) := \left(\frac{\partial p_i}{\partial K_i} \frac{\partial K_i}{\partial Z_{i,1}} \right), \quad \text{and} \quad r_i(\theta) := \left(\frac{\partial v_{i,1}^P(\theta, Z_i)}{\partial Z_{i,1}} \right). \]

Since we are interested in computing \(\nabla r_i(\theta_0) \), we apply Taylor’s theorem to equation (6.8) and by taking the coefficient of \(h \), we get
\[\nabla q_i(\theta_0)u - q_i(\theta_0)\nabla r_i(\theta_0)u = 0. \] (6.9)

With some simple manipulations, we have
\[\left. \frac{\partial}{\partial \theta} \left(\frac{\partial v_{i,1}^P}{\partial Z_{i,1}} \right) \right|_{\theta = \theta_0} = \left[\left(\left(\frac{\partial p_i}{\partial K_i} \right)^{-1} \left(\frac{\partial p_i}{\partial K_i} \frac{\partial K_i}{\partial Z_{i,1}} \right)^T \frac{\partial^2 p_i}{\partial K_i \partial K_i} \frac{\partial K_i}{\partial \theta} + \frac{\partial p_i}{\partial K_i} \frac{\partial S_{i-1}}{\partial K_i} \frac{\partial K_i}{\partial \theta} + \frac{\partial p_i}{\partial K_i} \frac{\partial S_{i-1}}{\partial \theta} \right) \right] \bigg|_{\theta = \theta_0} \] (6.10)
as, based on the definition of \(S_i(K_i(\theta, \theta)) \) in section 3.3.4., we have
\[\frac{\partial K_i^P(\theta)}{\partial Z_{i,1}} = S_{i-1}(K_{i-1}^P(\theta, \theta)) \]

6.1.5. Algorithm for the Naive Approach. Based on equations (6.2), (6.7) and (6.10), the partial proxy pathwise derivative can be easily calculated. Observe that the partial derivatives
\[\frac{\partial K_i}{\partial K_i}, \quad \frac{\partial K_i}{\partial Z_{i,1}}, \quad \frac{\partial F_{i-1}}{\partial \theta}, \quad \frac{\partial S_{i-1}}{\partial K_i}, \quad \frac{\partial S_{i-1}}{\partial \theta} \]
can be easily evaluated from the underlying numerical scheme while
\[\frac{\partial p_i}{\partial K_i} \quad \text{and} \quad \frac{\partial^2 p_i}{\partial K_i \partial K_i} \]
can be calculated from the proxy constraint function. Starting at \(t_0 \), we evolve the process \(K \). At each time step, we compute
\[\left. \frac{\partial v_{i,1}^P(\theta, Z_i)}{\partial \theta} \right|_{\theta = \theta_0} \]
using equation (6.7) followed by
\[\left. \frac{\partial K_i^P(\theta)}{\partial \theta} \right|_{\theta = \theta_0} \quad \text{and} \quad \left. \frac{\partial}{\partial \theta} \left(\frac{\partial v_{i,1}^P(\theta, Z_i)}{\partial Z_{i,1}} \right) \right|_{\theta = \theta_0} \]
using equation (6.2) and equation (6.10) respectively. We then compute
\[\left[\frac{\partial g^P(\theta)}{\partial K_i^P} \frac{\partial K_i^P(\theta)}{\partial \theta} + g^P(\theta) \left(Z_{i,1} \frac{\partial v_{i,1}^P(\theta, Z_i)}{\partial \theta} - \frac{\partial}{\partial \theta} \left(\frac{\partial v_{i,1}^P(\theta, Z_i)}{\partial Z_{i,1}} \right) \right) \right] \bigg|_{\theta = \theta_0}. \] (6.11)
The sum of (6.11) at each time step up to maturity will be the partial proxy pathwise derivative.
6.2. Evaluating Minimal Partial Proxy Pathwise Derivatives - A Naive Approach. Similarly, to compute the minimal partial proxy pathwise derivative in equation (5.4), we must evaluate

\[
\frac{\partial g^M(\theta)}{\partial K^M_i} \bigg|_{\theta=\theta_0}, \quad \frac{\partial K^M_i(\theta)}{\partial \theta} \bigg|_{\theta=\theta_0}, \quad \frac{\partial \alpha^M_{i,1}(\theta, Z_i)}{\partial \theta} \bigg|_{\theta=\theta_0} \quad \text{and} \quad \frac{\partial \alpha^M_{i,1}(\theta)}{\partial \theta} \bigg|_{\theta=\theta_0}. \quad (6.12)
\]

6.2.1. Computation of \(\frac{\partial g^M}{\partial K^M_i} \). Evaluating \(\frac{\partial g^M}{\partial K^M_i} \) is straight-forward. It can be calculated easily by differentiating the deflated product payoffs with respect to \(K^M_i \).

6.2.2. Computation of \(\frac{\partial K^M_i}{\partial \theta} \). Under the minimal partial proxy simulation scheme, we have

\[
\frac{\partial K^M_i}{\partial \theta} = \frac{\partial K^M_i}{\partial K^M_{i-1}} \frac{\partial K^M_{i-1}}{\partial \theta} - \frac{\partial K^M_i}{\partial \alpha^M_{i,1}} \frac{\partial \alpha^M_{i,1}}{\partial \theta} + \frac{\partial F_{i-1}}{\partial \theta}. \quad (6.13)
\]

6.2.3. Computation of \(\frac{\partial \alpha^M_{i,1}}{\partial \theta} \). The minimal partial proxy scheme requires \(\alpha^M_{i,1}(\theta) \) to satisfy the equation (3.21) to minimise the variance of the Monte-Carlo weight. By applying Taylor’s theorem to equation (3.21) and using

\[
X^M_{i,1}(\theta_0) = \alpha^M_{i,1}(\theta_0)Z^*_i + \beta^M_{i,1}(\theta_0) = Z^*_{i,1},
\]

we conclude that

\[
\frac{\partial \alpha^M_{i,1}}{\partial \theta} \bigg|_{\theta=\theta_0} = \left(\frac{Z^*_{i,1}}{2 + (Z^*_{i,1})^2} \right) \frac{\partial X^M_{i,1}}{\partial \theta} \bigg|_{\theta=\theta_0}. \quad (6.14)
\]

6.2.4. Computation of \(\frac{\partial X^M_{i,1}}{\partial \theta} \). The partial derivative, \(\frac{\partial X^M_{i,1}}{\partial \theta} \), can be derived using the facts that \(\tilde{K}^M_i(\theta) \) is a function of \(X^M_{i,1}(\theta) \) and \(\tilde{K}^M_i(\theta) \) must satisfy equation (3.19) to prevent pathwise discontinuities. Therefore, by applying Taylor’s theorem to equation (3.19), we conclude that

\[
\left[\frac{\partial p_i}{\partial K^M_i} \left(\frac{\partial \tilde{K}^M_i}{\partial K^M_{i-1}} + \frac{\partial \tilde{K}^M_i}{\partial X^M_{i,1}} + \frac{\partial \tilde{F}_{i-1}}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0} = \frac{\partial H^M_i}{\partial \theta} \bigg|_{\theta=\theta_0},
\]

and here, instead of using \(F_{i-1} \), we use \(\tilde{F}_{i-1} \) to denote the mapping function conditioning on \(Z_{i,1} = Z^*_{i,1} \). Hence, by rearranging the equation above, we have

\[
\frac{\partial X^M_{i,1}}{\partial \theta} \bigg|_{\theta=\theta_0} = \left[\frac{\partial p_i}{\partial K^M_i} \frac{\partial K^M_i}{\partial Z^*_i} \right]^{-1} \left(\frac{\partial H^M_i}{\partial \theta} \right) \bigg|_{\theta=\theta_0} \quad (6.15)
\]

as

\[
\frac{\partial K^M_i}{\partial Z^*_i} = \frac{\partial \tilde{K}^M_i}{\partial X^M_{i,1}}.
\]

We also note that

\[
\frac{\partial X^M_{i,1}}{\partial \theta} = Z^*_{i,1} \frac{\partial \alpha^M_{i,1}}{\partial \theta} + \frac{\partial \beta^M_{i,1}}{\partial \theta}. \quad (6.16)
\]

from equation (3.20).
6.2.5. Computation of $\frac{\partial H^M_i}{\partial \theta}$. Since H^M_i is an $\mathcal{F}_{t_{i-1}}$-measurable function, in general, we have

$$\frac{\partial H^M_i}{\partial \theta} = \sum_{l=0}^{i-1} \left(\frac{\partial H^M_i}{\partial K^M_l} \right) \left(\frac{\partial K^M_l}{\partial \theta} \right).$$

(6.17)

However, in order to compute pathwise derivative efficiently, we will assume that H^M_i is a function of previous trigger level, H^M_{i-1} and underlying quantities, K^M, at time t_{i-1}. So, we have

$$\frac{\partial H^M_i}{\partial \theta} = \frac{\partial H^M_i}{\partial H^M_{i-1}} \frac{\partial H^M_{i-1}}{\partial \theta} + \frac{\partial H^M_i}{\partial K^M_{i-1}} \frac{\partial K^M_{i-1}}{\partial \theta}.$$

(6.18)

Such assumptions are not unreasonable as the trigger functions for complicated path-dependent products such as LIBOR TARNs and CMS TARNs (see section 10) can be expressed in this form.

6.2.6. Computation of $\frac{\partial \nu^M_{i,1}}{\partial \theta}$. Since

$$\nu^M_{i,1}(\theta, Z_i) = (1 - \alpha^M_{i,1}(\theta))Z_{i,1} - \beta^M_{i,1}(\theta),$$

the sensitivity of $\nu^M_{i,1}$ with respect to θ_0 can be expressed in the following form

$$\left. \frac{\partial \nu^M_{i,1}}{\partial \theta} \right|_{\theta=\theta_0} = \left. \left[-Z_{i,1} \frac{\partial \alpha^M_{i,1}}{\partial \theta} - \frac{\partial \beta^M_{i,1}}{\partial \theta} \right] \right|_{\theta=\theta_0}$$

$$= \left. \left[\left(-\frac{2 + Z_{i,1}^*Z_{i,1}^*}{2 + (Z_{i,1}^*)^2} \right) \frac{\partial X^M_i}{\partial \theta} \right] \right|_{\theta=\theta_0},$$

(6.19)

using results from (6.14) and (6.16). Computing $\frac{\partial \nu^M_{i,1}}{\partial \theta}$ is straight-forward once we have $\frac{\partial X^M_i}{\partial \theta}$.

6.2.7. Algorithm for the Naive Approach. Observe that the partial derivatives

$$\frac{\partial K^M_i}{\partial K^M_{i-1}}, \quad \frac{\partial K^M_i}{\partial Z_{i,1}}, \quad \frac{\partial F_{i-1}}{\partial \theta}, \quad \frac{\partial K^M_{i-1}}{\partial K^M_{i-1}}$$

and $\frac{\partial F_{i-1}}{\partial \theta}$

can be obtained easily from the underlying numerical scheme while

$$\frac{\partial p_i}{\partial K^M_i}, \quad \frac{\partial H^M_i}{\partial H^M_{i-1}}$$

and $\frac{\partial H^M_i}{\partial K^M_{i-1}}$

can easily be calculated from the proxy constraint function and the product trigger function. Starting at t_0, we evolve the process K. At each step, we compute $Z^*_{i,1}$ and $\frac{\partial H^M_i}{\partial \theta}$ using equation (3.16) and (6.18) respectively. If $Z^*_{i,1}$ is greater than ± 4, we set $\frac{\partial H^M_i}{\partial \theta} = \frac{\partial H^M_i}{\partial \theta} = \frac{\partial \nu^M_{i,1}}{\partial \theta} = 0$ (i.e no measure change) else we compute

$$\left. \frac{\partial X^M_i}{\partial \theta} \right|_{\theta=\theta_0}, \quad \left. \frac{\partial \nu^M_{i,1}}{\partial \theta} \right|_{\theta=\theta_0}, \quad \text{and} \quad \left. \frac{\partial \alpha^M_{i,1}}{\partial \theta} \right|_{\theta=\theta_0},$$

using (6.15), (6.19) and (6.14). We then proceed to compute

$$\left. \frac{\partial K^M_i}{\partial \theta} \right|_{\theta=\theta_0},$$

using (6.13). By accumulating
\[
\left[\frac{\partial g^M(\theta) \partial K_i^M(\theta)}{\partial \theta} + g^M(\theta) \left(Z_{i,1} \frac{\partial \nu_i^M(\theta, Z_i)}{\partial \theta} + \frac{\partial \alpha_i^M(\theta)}{\partial \theta} \right) \right] \bigg|_{\theta=\theta_0}.
\]

(6.20)

from \(t_1 \) up to \(t_m \), we will obtain the pathwise derivative under the minimal partial proxy scheme.

6.3. Evolving the State Variables. One important issue that is worth discussing is the evolution of our state variables, \(K \). By construction, given the initial inputs \(\theta_0 \) and a vector of \(Z \), we have \(K_i^E(\theta_0) = K_i^P(\theta_0) = K_i^M(\theta_0) \) for all \(i \) as no measure change is required (i.e \(\nu_i^P(\theta_0, Z_i) = \nu_i^M(\theta_0, Z_i) = 0 \)). Since all the partial derivatives are evaluated at \(\theta_0 \), we can instead evolve the state variables using \(E^0 \) and compute all the partial derivatives based on the realization of \(K_i^E(\theta_0) \) at each time step.

7. Evaluating Pathwise Derivatives - The Adjoint Method

As explained in section 6, the naive approach involves matrix recursions. Hence, the computational cost can be very high when we have a large number of state variables and inputs. By using the adjoint method, we can reduce the computational order. The use of the adjoint method in computing price sensitivities was first introduced by Giles and Glasserman (2006). Instead of using matrix recursions, the pathwise derivative can be evaluated using vector recursions starting from time step \(t_m \) up to \(t_0 \) (i.e. backward summation). The vector recursion results for the partial proxy scheme and the minimal partial proxy scheme can be easily derived using mathematical inductions.

In this section, we present the adjoint algorithm to evaluate the partial proxy pathwise derivatives and the minimal partial proxy pathwise derivatives. Here, instead of explicitly stating that a partial derivative is evaluated at \(\theta_0 \), we assume all the partial derivatives are evaluated at \(\theta_0 \). Any new vector notations introduced in this section and section 8 will be in the form of \(B^A(i) \) where \(A \) represents the specific numerical scheme and \(i \) is the time index. Whilst previously notations in the form of \(B^A(\theta) \) were useful in emphasizing the dependency on \(\theta \) for the purpose of deriving the pathwise derivative, here, in contrast, we emphasize the dependency on the time \(t_i \). Similarly, any new scalar quantities introduced here will be in the form of \(b^A(i) \) (i.e. lower case).

7.1. Evaluating Partial Proxy Pathwise Derivatives - The Adjoint Method. Suppose that we have \(m \) time steps in our simulation, we set \(V^P(m) = 0 \) and \(R^P(m) = 0 \) where \(V^P(m) \) and
\(R^P(m)\) are row vectors and we let

\[
C^P(i) = \left(\frac{\partial p_i}{\partial K^P_i} \frac{\partial K^P_i}{\partial Z_{i,1}} \right)^{-1} \frac{\partial p_i}{\partial K^P_i},
\]

\[
D^P(i) = V^P(i) + \frac{\partial g^P}{\partial K^P_i} - g^P \cdot \left(\frac{\partial p_i}{\partial K^P_i} \frac{\partial K^P_i}{\partial Z_{i,1}} \right)^{-1} \left(\frac{\partial K^P_i}{\partial Z_{i,1}} \right)^T \frac{\partial^2 p_i}{\partial K^P_i \partial K^P_i},
\]

\[
B^P(i) = g^P C^P(i) \frac{\partial S_{i-1}}{\partial \theta}.
\]

\[
\hat{V}^P(i) = D^P(i) + \left(g^P Z_{i,1} - D^P(i) \frac{\partial K^P_i}{\partial Z_{i,1}} \right) C^P(i).
\]

\[
V^P(i-1) = \hat{V}^P(i) \frac{\partial K^P_i}{\partial K^P_{i-1}} - g^P C^P(i) \frac{\partial S_{i-1}}{\partial K^P_{i-1}},
\]

\[
R^P(i-1) = \hat{V}^P(i) \frac{\partial F_{i-1}}{\partial \theta} - B^P(i) + R^P(i).
\]

The adjoint algorithm to compute the partial proxy pathwise derivative for any given path is as follows:

1. We compute and store all the relevant partial derivatives as we evolve \(K\) and we set \(V^P(m) = 0\) and \(R^P(m) = 0\).
2. At step \(i\), we compute \(C^P(i)\) followed by \(D^P(i)\), \(B^P(i)\) and \(\hat{V}^P(i)\).
3. We then compute \(R^P(i-1)\) and \(V^P(i-1)\).
4. We repeat step (2) and (3) from \(i = m\) to \(i = 1\) and the pathwise derivative is given by

\[
V^P(0) \frac{\partial K^P_0}{\partial \theta} + R^P(0).
\]

Note that equation (7.1) can also be written as

\[
V^P(0) \frac{\partial K^P_0}{\partial \theta} + \sum_{i=1}^{m} \left(\hat{V}^P(i) \frac{\partial F_{i-1}}{\partial \theta} - B^P(i) \right).
\]

7.2. Evaluating Minimal Partial Proxy Pathwise Derivatives - The Adjoint Method.

Suppose that we have \(m\) time steps in our simulation, we set \(V^M(m) = 0\) and \(R^M(m) = 0\) where \(V^M(m)\) and \(R^M(m)\) are row vectors and \(b^M(m) = 0\) where \(b^M(m)\) is a scalar quantity. We define

\[
\hat{V}^M(i) = V^M(i) + \frac{\partial g^M}{\partial K^M_i}.
\]
where the algorithm to compute the minimal partial proxy pathwise derivative for a given path is as follows:

(1) We compute and store all the relevant partial derivatives as we evolve K and we set $V_M(m) = 0$, $R_M(m) = 0$ and $b_M(m) = 0$.

(2) At step i, we compute $V_M(i)$ followed by $c_M(i)$, $\hat{V}_M(i)$ and $d_M(i)$.

(3) We then compute $V_M(i-1)$, $R_M(i-1)$ and $b_M(i-1)$ and.

(4) We repeat step (2) and (3) from $i = m$ to $i = 1$ and the pathwise derivative is given by

\[V_M(0) \frac{\partial K_M^0}{\partial \theta} + R_M(0) \]

(7.3)

Note that, equation (7.3) can also be rewritten as

\[V_M(0) \frac{\partial K_M^0}{\partial \theta} + \sum_{i=1}^{m} \left(\hat{V}_M(i) \frac{\partial F_{i-1}}{\partial \theta} + \hat{V}_M(i) \frac{\partial \hat{F}_{i-1}}{\partial \theta} \right) \]

(7.4)

7.3. Limitations of The Adjoint Method. Using the adjoint method presented in this section, we cannot do better than $O(n^2)$ per step (assuming θ is an n-dimensional vector and we have n state variables). This is because at each step of the simulation, we have to compute

\[[P1] \hat{V}_P(i) \frac{\partial K_P^i}{\partial K_P^{i-1}} \text{,} \quad [P2] \left(\frac{\partial K_P^i}{\partial Z_i} \right)^T \frac{\partial^2 p_i}{\partial K_P^i \partial K_P^i} \text{,} \quad [P3] C_P(i) \frac{\partial S_{i-1}}{\partial K_P^{i-1}} \text{,} \quad [P4] C_P(i) \frac{\partial S_{i-1}}{\partial \theta} \text{,} \quad [P5] \hat{V}_P(i) \frac{\partial F_{i-1}}{\partial \theta} \text{,} \quad (7.5) \]

for the partial proxy simulation scheme, and similarly,

\[[M1] \hat{V}_M(i) \frac{\partial K_M^i}{\partial K_M^{i-1}} \text{,} \quad [M2] \hat{V}_M(i) \frac{\partial K_M^i}{\partial K_M^{i-1}} \text{,} \quad [M3] \hat{V}_M(i) \frac{\partial F_{i-1}}{\partial \theta} \text{,} \quad [M4] \hat{V}_M(i) \frac{\partial \hat{F}_{i-1}}{\partial \theta} \]

(7.6)

for the minimal partial proxy scheme. All these involve multiplications of a $(1 \times n)$ vector with a $(n \times n)$ matrix.
The theory of algorithmic (automatic) differentiation states that the computational complexity of the adjoint calculation is no more than four times greater than the computational complexity of the original algorithm. Therefore, if the computational order of the price of a derivative is proportional to the number of underlying times the number of factors at each step of the simulation (i.e. $O(nd)$ per step) then the Greeks can also be evaluated with the same order. It turns out that many popular models such as the Black-Scholes model and the LIBOR market model have a pricing complexity of $O(nd)$ per step and, using this theorem, we can further reduce the computational order of the Monte-Carlo Greeks from $O(n^2)$ to $O(nd)$ per step.

For cases where the pay-off function is continuous, Giles and Glasserman (2006) have shown how all the deltas and vegas can be evaluated with a computational order of $O(nd)$ per step using the LIBOR market model as an example. Their approach involves studying the special drift structure of the LIBOR market model and they use the forward rates to carry out the differentiation.

Similar results were also presented by Denson and Joshi (2009). Instead of evolving the forward rates directly, they evolved the log of the forward rates. They show that by using the log of the forward rates as the states variables to carry out the differentiation, we can achieve an additional 20% speed improvement when computing deltas and vegas.

For our case, algorithmic differentiation does not directly apply because of the need to regularize the derivative. Nevertheless, we show in this section that it is possible to obtain the same computational order for the LMM using both the new pathwise methods. In particular, we work with the log of the forward rates and show that, for cases where we have linear or linearized proxy constraint functions, all deltas and elementary vegas can be evaluated with a computational order of $O(nd)$ per step. We wish to emphasize that this result also holds for other models such as the Black-Scholes model, the swap-rate market model and the displaced diffusion LMM as long as the computational complexity in evolving the underlying quantities is also $O(nd)$ per step.

8.1. LIBOR Market Model. Under the LIBOR Market Model, we have n forward rates f_1, f_2, \ldots, f_n with the corresponding tenor structure of $t_0 = 0 < t_1 < \ldots < t_{n+1}$ and forward rates are assumed to follow

$$\frac{df_j(t)}{f_j(t)} = \mu_j(f,t)dt + \sigma_j(t)dW(t),$$

where $\sigma_j(t)$ is a deterministic d-dimensional row vector and $W(t)$ is a d-dimensional column vector of uncorrelated Brownian motions. Under the spot-measure, which corresponds to using the discretely compounded money market account as numeraire, the drift term is given by

$$\mu_j(f,t) = \sum_{j=h=\eta(t)}^i \frac{f_h(t)\tau_h}{1 + f_h(t)\tau_h} \sigma_j(t)\sigma_h(t)^T,$$

where $\tau_i = t_{i+1} - t_i$ and $\eta(t)$ gives the index of the next forward rate to reset at time t. Under the usual log-Euler discretization (see Joshi, 2003a) with $f_j(t_i) \equiv f_j(i)$, we have

$$\log f_j(i + 1) = \log f_j(i) + \tilde{\mu}_j(f(i)) - \frac{1}{2}C_{jj}(i) + a_j^i(i)Z(i + 1)$$
with
\[\tilde{\mu}_j(f(i)) = \sum_{h=\eta(t)}^j \frac{f_h(i)\tau_h}{1 + f_h(i)\tau_h} C_{jh}(i) \]
where \(C_{jh}(i) \) is the covariance between \(\log f_j \) and \(\log f_h \) from \(t_i \) to \(t_{i+1} \), \(Z(i+1) \) is a \(d \)-dimensional column vector of standard normal random variables and \(a^*_j(i) \) is the \(j \)th row of the \(n \times d \) pseudo-root, \(A(i) = (a_{js}(i)) \) such that
\[A(i)A(i)^T = C(i). \]

8.2. Fast LMM Deltas. In this section, we show that all deltas can be evaluated with a computational order of \(\mathcal{O}(nd) \) per step under the LMM.

8.2.1. Fast Deltas under the Pathwise Partial Proxy Method. Under the Pathwise Partial Proxy Method, pathwise deltas are given by
\[V^P(0) \frac{\partial K_0^P}{\partial \theta} \]
where
\[\frac{\partial K_0^P}{\partial \theta} = \text{diag} \left(\frac{1}{f_1(0)}, \frac{1}{f_2(0)}, \ldots, \frac{1}{f_n(0)} \right) \]
as
\[\frac{\partial F_i}{\partial \theta} = 0, \quad \frac{\partial S_i}{\partial \theta} = 0. \quad (8.4) \]
We also have
\[\frac{\partial S_i}{\partial K_i^P} = 0. \]
as pseudo-square roots at each time step are state independent. Therefore, as long as we can evaluate expression \([P1]\) and \([P2]\) from equation (7.5) with a computational order of \(\mathcal{O}(nd) \), then the overall computational order for deltas will be \(\mathcal{O}(nd) \) per step. Observe that, the expression \([P2]\) exists due to the second order partial derivative of the proxy constraint \(p_i \) with respect to \(K_i^P \). Clearly, if we have a linear proxy constraint function, \([P2]\) will be zero. Here, our approach is to linearize the proxy constraint function. In particular, we will linearize both sides of equation (3.4) at \(\tilde{K}_i^E(\theta_0) \) and this turns out to be a good linearization point based on our numerical results. Since we have now linearized the proxy constrain function, we have
\[\left. \frac{\partial p_i}{\partial K_i^P} \right|_{\theta=\theta_0}, \quad \text{instead of} \quad \left. \frac{\partial p_i}{\partial K_i^P} \right|_{\theta=\theta_0} \]
in section 6.1 and 7.1.

By studying the special drift structure of the forward rates under the LIBOR Market Model, the computational order of \([P1]\) can be reduced to \(\mathcal{O}(nd) \) (For example, see Denson and Joshi (2009)). Instead of evaluating
\[\tilde{V}^P(i+1) \frac{\partial K_{i+1}^P}{\partial K_i^P} = \tilde{V}^P(i+1) \frac{\partial \log f(i+1)}{\partial \log f(i)}. \quad (8.5) \]
directly using matrix multiplications, we split this computation into two parts where each part only requires a computation order of $O(nd)$. We first compute

$$Y_j(i) = \sum_{h=j}^{n} \tilde{V}_h^P(i+1) a_h^r(i)^T$$ \hspace{1cm} (8.6)

for all j where $Y_j(i)$ is a d-dimensional row vector and $\tilde{V}_h^P(i+1)$ represents the h elements in the vector $\tilde{V}^P(i+1)$. The j^{th} element of the expression in (8.5) is then calculated using

$$\tilde{V}_j^P(i+1) + \frac{f_j(i) \tau_j(i)}{1 + f_j(i) \tau_j(i)^2} Y_j(i).$$ \hspace{1cm} (8.7)

Hence, the expression in (8.5) can be evaluated with a computational order of $O(nd)$.

8.2.2. Fast Deltas under the Pathwise Minimal Partial Proxy Method. Similarly, under the Pathwise Minimal Partial Proxy Method, pathwise deltas are given by

$$V^M(0) \frac{\partial K^0_M}{\partial \theta}$$

where

$$\frac{\partial K^0_M}{\partial \theta} = \text{diag} \left(\frac{1}{f_1(0)}, \frac{1}{f_2(0)}, \ldots, \frac{1}{f_n(0)} \right)$$

as

$$\frac{\partial F_{i-1}}{\partial \theta} = 0 \quad \text{and} \quad \frac{\partial F_{i-1}}{\partial \theta} = 0$$ \hspace{1cm} (8.8)

for all i. Under the LMM, we have

$$\frac{\partial \hat{K}_i}{\partial K_{i-1}} = \frac{\partial K_i}{\partial K_{i-1}}$$

as diffusion coefficients (i.e pseudo-roots) do not depend on the state variables. Hence, as long as the following expression

$$\left[\tilde{V}^M(i) + \hat{V}(i) \right] \frac{\partial K^M_i}{\partial K^M_{i-1}}$$

can be evaluated with a computational order of $O(nd)$ then the overall computational order for deltas will be $O(nd)$ per step. In the previous sections, we have shown how this can be done.

8.3. Fast Elementary Vegas. For the purpose of the LMM, we are usually interested in the elementary vegas, which is defined to be price sensitivity with respect to the pseudo-square root element a_{js}. We have n steps in our simulation and, at each step of our simulation, there are $n \times d$ pseudo-square root elements. Hence, in total, there are $n^2 d$ price sensitivities to be evaluated (i.e with respect to all entries of the pseudo-square roots). Elementary vegas are usually converted to market vegas (see, Joshi and Kwon (2009)) for hedging purposes. Under the LMM, all elementary vegas can be evaluated with a computational order of $O(nd)$ per step.

8.3.1. Fast Elementary Vegas under the Pathwise Partial Proxy Method. Under the Pathwise Partial Proxy Method, the pathwise price sensitivity with respect to $a_{js}(i)$ is given by

$$\tilde{V}_j^P(i+1) \frac{\partial F_i}{\partial a_{js}(i)} - B^P(i+1)$$ \hspace{1cm} (8.9)
where
\[B^P(i + 1) = g^P C^P(i + 1) \frac{\partial S_i}{\partial a_{js}(i)} \]

Note that, once pathwise deltas are calculated, we have \(\hat{V}^P(i + 1) \) and \(C^P(i + 1) \).

In order to show that all elementary vegas can be evaluated with a computational order of \(O(nd) \) per step, we will first look at the computation of \(B^P(i + 1) \). Based on the definition of \(S_i \), we have
\[S_i = (a_{11}(i), a_{21}(i), \ldots, a_{n1}(i))^T. \]

Hence,
\[B^P(i + 1) = \begin{cases}
 g^P C^P_j(i + 1), & \text{if } s = 1 \\
 0, & \text{if } s = 2, \ldots, d
\end{cases} \tag{8.10} \]

where \(C^P_j(i + 1) \) represent the \(j \)th element in the row vector \(C^P(i + 1) \). The computation of \(B^P(i + 1) \) is trivial once \(C^P(i + 1) \) is known.

Using the results from Denson and Joshi (2009), we have
\[\hat{V}^P(i + 1) \frac{\partial F_i}{\partial a_{js}(i)} = (L_{js}(i) - a_{js}(i) + Z_s(i + 1))\hat{V}^P_j(i + 1) + \frac{f_j(i)\tau_j}{1 + f_j(i)\tau_j} M_{js}(i) \tag{8.11} \]

where
\[M_{js}(i) = \sum_{h=j}^n \hat{V}^P_h(i + 1)a_{hs}(i) \]
\[L_{js}(i) = \sum_{h=\eta(i)}^j \frac{f_h(i)\tau_h}{1 + f_h(i)\tau_h} a_{hs}(i) \]
\[Z_s(i + 1) \equiv Z_{i+1,s} \tag{8.12} \]

As \(M_{js}(i) \) and \(L_{js}(i) \) can be calculated recursively, the computation order of \(M_{js}(i) \) and \(L_{js}(i) \) for all \(j \) and \(s \) at time \(t_i \) is at most \(O(nd) \). Therefore, price sensitivities with respect to all entries of the pseudo-square root at time \(t_i \) can be evaluated with a computational order of \(O(nd) \) and we conclude that all elementary vegas can be evaluated with a computational order of \(O(nd) \) per step.

8.3.2. Fast Elementary vegas under the Pathwise Minimal Partial Proxy Method. Similarly, under the Pathwise Minimal Partial Proxy Method, the pathwise price sensitivity with respect to \(a_{js}(i) \) is given by
\[\hat{V}(i + 1) \frac{\partial F_i}{\partial a_{js}(i)} + \hat{V}(i + 1) \frac{\partial \hat{F}_i}{\partial a_{js}(i)} \]

and, as usual, once pathwise deltas are calculated, we have \(\hat{V}(i + 1) \) and \(\hat{V}(i + 1) \). Recall that the only difference between \(F_i \) and \(\hat{F}_i \) is that under \(\hat{F}_i \), we condition on \(Z_{i+1,1} = Z_{i+1,1}^* \). Therefore, as long as \(s \neq 1 \), the pathwise price sensitivity is given by
\[\left[\hat{V}(i + 1) + \hat{V}(i + 1) \right] \frac{\partial F_i}{\partial a_{js}(i)}. \tag{8.13} \]
else, if \(s = 1 \), the pathwise price sensitivity is given by

\[
\left[\tilde{V}(i + 1) + \hat{V}(i + 1) \right] \frac{\partial F_i}{\partial a_{js}(i)} + (Z_i^*(i + 1) - Z_1(i + 1)) \hat{V}_j(i + 1).
\]

(8.14)

where \(Z_i^*(i + 1) - Z_1(i + 1) \equiv Z_{i+1,1}^* - Z_{i+1,1} \). Using the results from section 8.3.1, we conclude that all elementary vegas can be calculated with a computational order of \(O(nd) \) per step.

9. RELATIONSHIPS WITH THE STANDARD PATHWISE METHOD AND THE LIKELIHOOD RATIO METHOD

The two most popular methods in computing sensitivities are the standard pathwise method and the likelihood ratio method (LRM) of Broadie and Glasserman (1996). These two approaches are generally viewed as distinctly different from one another. Suppose that, we are interested in computing

\[
\frac{\partial}{\partial \theta} E(g(K_1(\theta), K_2(\theta), \ldots, K_m(\theta))).
\]

(9.1)

The standard pathwise method relies on the differentiability of the function \(g \) (in fact, Lipschitz continuity is enough). Provided that the function \(g \) (and the discretization scheme) satisfies the Lipschitz property, the differentiation and the expectation operator can be interchanged and we therefore have

\[
\frac{\partial}{\partial \theta} E(g(K_1(\theta), K_2(\theta), \ldots, K_m(\theta))) = E \left[\frac{\partial}{\partial \theta} g(K_1(\theta), K_2(\theta), \ldots, K_m(\theta)) \right]
\]

\[
= E \left[\sum_{i=1}^{m} \frac{\partial g(\theta)}{\partial K_i(\theta)} \frac{\partial K_i(\theta)}{\partial \theta} \right],
\]

(9.2)

where \(g(\theta) \equiv g(K_1(\theta), K_2(\theta), \ldots, K_m(\theta)) \). Hence, under the pathwise method, sensitivities can be evaluated by differentiating each simulated outcome with respect to the parameter of interest, \(\theta \). While this method is easy to implement, the strict requirement on \(g \) being a Lipschitz continuous function imposes a huge limitation on the practical applicability of the pathwise method. Often, in practice, the function \(g \) is discontinuous particularly in financial application.

Unlike the standard pathwise method, the likelihood ratio method does not impose any restriction on the function \(g \). Instead, sensitivities are evaluated by differentiating the probability density function of the underlying state variables. By performing a change of variables, one can shift the parameter of interest, \(\theta \), from the function \(g \) into the probability density function of the underlying state variables and hence, equation (9.1) can be expressed as

\[
\frac{\partial}{\partial \theta} \int_{\mathbb{R}^m \times \mathbb{R}^n} g(x_1, x_2, \ldots, x_m) \prod_{i=1}^{m} \psi(x_i|x_{i-1}, \theta) dx_1 dx_2 \ldots dx_m
\]

(9.3)

where \(x_i \in \mathbb{R}^n \), \(x_0 = K_0(\theta) \) and \(\psi(x_i|x_{i-1}, \theta) \) is the density function of \(x_i \) conditional on \(x_{i-1} \) and \(\theta \). Note that, as the likelihood ratio method requires a full factor model, the matrix \(A(x_i, \theta, t_i) \) is therefore a \(n \times n \) matrix. Similar to the pathwise method, the likelihood ratio method relies on interchanging the order of differentiation and integration (i.e. expectation). However, as probability densities are typically smooth functions, the order of differentiation and integration can be
interchanged easily. Hence, we can rewrite equation (9.3) as
\[\int_{\mathbb{R}^{m} \times \mathbb{R}^{n}} g(x_1, x_2, \ldots, x_m) \frac{\partial}{\partial \theta} \prod_{i=1}^{m} \psi(x_i | x_{i-1}, \theta) dx_1 dx_2 \ldots dx_m = E \left[g(x_1, x_2, \ldots, x_m) \sum_{i=1}^{m} \frac{\partial \log \psi(x_i | x_{i-1}, \theta)}{\partial \theta} \right] \] (9.4)

Therefore, under the likelihood ratio method, sensitivities can be evaluated using the result in equation (9.4) and the expression
\[\sum_{i=1}^{m} \frac{\partial \log \psi(x_i | x_{i-1}, \theta)}{\partial \theta} \]
is also known as the score function.

Under both the pathwise partial proxy method and the pathwise minimal partial proxy method, the sensitivities with respect to \(\theta \) satisfy the following form
\[E \left[\sum_{i=1}^{m} \left(\frac{\partial g(\theta)}{\partial K_i(\theta)} \frac{\partial K_i(\theta)}{\partial \theta} + g(\theta) \frac{\partial \log w_i(\theta)}{\partial \theta} \right) \right] \] (9.5)

Observe that, the first term in the expectation is similar to the sensitivities evaluated using the standard pathwise method while the second term in the expectation is similar to the sensitivities evaluated using the likelihood ratio method. Therefore, our new approaches can be viewed as a hybrid of the standard pathwise method and the likelihood ratio method. In particular, if the function \(g \) is continuous, then there is no need to define a proxy constraint function, \(p_i \), and our new methods reduce to the pathwise method. However, if \(g \) is a discontinuous function then the pathwise PP method can be viewed as using the standard pathwise method to compute the sensitivities in the non-discontinuous directions whereas the sensitivities in the discontinuous directions are evaluated using the likelihood ratio method, whilst for the pathwise minimal partial proxy method, both the pathwise method and the likelihood ratio method are used to compute sensitivities even in the discontinuous directions.

So far in this paper, we have only constructed the pathwise PP method such that it is applicable to an \(n \)-dimensional state space with a one dimensional discontinuity at each time step of the simulation. That is, at each step of our simulation, we have \(n \) state variables and the occurrence of pathwise discontinuities only depends on a one dimensional quantity. In contrast, the likelihood ratio method can be applied to an \(n \)-dimensional state space with an \(n \)-dimensional discontinuity at each simulation time step. When computing sensitivities for any discontinuous function \(g \), in general, we are working in an \(n \)-dimensional state space with an \(n \)-dimensional discontinuity at each simulation time step. That is any one of the \(n \) state variables might cause pathwise discontinuities at each simulation time step. However, in many instances, pathwise discontinuities are effectively caused by a single one dimensional quantity which in turn is a function of the state variables and this is the main idea of the partial proxy simulation scheme and the pathwise PP method. By defining the proxy constraint function \(p_i \)
\[p_i : \mathbb{R}^n \rightarrow \mathbb{R}, \]
to be the quantity that causes pathwise discontinuities at time \(t_i \), we can map an \(n \)-dimensional state space into a one dimensional state space and an \(n \)-dimensional discontinuity into a one dimensional discontinuity. The sensitivities in the discontinuous direction can then be evaluated by applying the likelihood ratio method to this transformed 1-dimensional state space with a 1-dimensional discontinuity while the sensitivities of \(g \) in the non-discontinuous directions are evaluated using the pathwise approach.

Another interesting point of discussion is the applicability of the pathwise PP method in a reduced-factor model. We know that the likelihood ratio method require a full factor model (i.e. in this case \(n \) factors). However, under the pathwise PP approach, the \(n \)-dimensional problem is transformed into a one dimensional problem before applying the likelihood ratio method. This means that the pathwise PP method can be utilized with no restriction on the number of factors. Also, as mentioned earlier, the pathwise PP method is constructed by defining the proxy constraint function \(p_i \) to be a map from \(p_i : \mathbb{R}^n \rightarrow \mathbb{R} \). One possible extension to the pathwise PP method is to define \(p_i \) to be a map from \(p_i : \mathbb{R}^n \rightarrow \mathbb{R}^l \) for \(l \leq n \) (which can be done) and whenever \(p_i : \mathbb{R}^n \rightarrow \mathbb{R}^n \), the pathwise PP method will reduce to the likelihood ratio method.

Similar to the pathwise PP method, the pathwise MPP method also transforms the \(n \)-dimensional problem into a one-dimensional problem. However, the crucial difference is that instead of applying the likelihood ratio method to compute the sensitivities in the discontinuous directions, a hybrid approach is used. In particular, within the discontinuous directions, sensitivities are evaluated by selecting a smoothly varying mix of likelihood ratio method and pathwise method such that the impact of the likelihood ratio method is minimised whilst being purely likelihood ratio at the point where the discontinuity occurs. As the standard pathwise method (when applicable) is known to produce sensitivity estimates with lower variance (particularly for vegas) than the likelihood ratio method, we can potentially lower the variance of the Monte-Carlo sensitivities by using a hybrid approach in the discontinuous direction. This is not surprising given that, by construction, the minimal partial proxy simulation scheme (the non-limiting case) chooses a measure change that minimises the variance of the Monte-Carlo weights, \(w_i^M(\theta) \) for all time step \(i \). Therefore, in the limiting case, we are effectively minimising the variance of

\[
\sum_{i=1}^{m} \frac{\partial \log w_i^M(\theta)}{\partial \theta},
\]

and this is can be indirectly viewed as minimising the variance of the score function of the likelihood ratio method.

To appreciate the difference between the pathwise PP method and the pathwise MPP method, we consider a simple example where we compute the delta and the vega of a digital call option with a one-year maturity, \(T = 1 \), using the one-dimensional Black-Scholes model with zero interest rate. We assume that the initial share price, \(S_0 \), is 100 with a volatility, \(\sigma \), of 50% and the digital call option has a strike, \(H \), of 100. Since we are working in a one-dimensional state space, the delta
and the vega can be evaluated using a direct integration instead of using a Monte-Carlo simulation. The results are summarized in table 9.1.\footnote{Note that, the variance (the square of standard deviation) of the sensitivity estimators are calculated by subtracting the square of the expectation of the estimators from the expectation of the square of the estimators.}

As expected, the pathwise PP method and the pathwise MPP method give same estimates for delta and vega. While the delta estimators for the pathwise PP method and the pathwise MPP method have similar standard deviations, the standard deviation of the vega estimator for the pathwise MPP method is significantly lower than that for the PP method. To explain this observation, we look at the plot of $\frac{\partial \log w(\theta)}{\partial \theta}$ against Z. Here, we shall call $\frac{\partial \log w(\theta)}{\partial \theta}$ the score function.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
 & Pathwise PP & & Pathwise MPP & \\
 & mean & stdev & mean & stdev \\
\hline
delta & 0.77\% & 1.18\% & 0.77\% & 1.31\% \\
vega & -19.33\% & 156.16\% & -19.33\% & 32.73\% \\
\hline
\end{tabular}
\caption{Deltas and vegas for digital call option evaluated using Pathwise PP method and Pathwise MPP method.}
\end{table}
When computing delta, the score functions are given by

\[\frac{\partial \log w^P(\theta)}{\partial \theta} = \frac{Z}{S_0\sigma\sqrt{T}}, \]
\[\frac{\partial \log w^M(\theta)}{\partial \theta} = \frac{1}{S_0\sigma\sqrt{T}}, \]

while score functions for vega are given by

\[\frac{\partial \log w^P(\theta)}{\partial \theta} = \frac{Z^2 - 1}{\sigma} - Z\sqrt{T}, \]
\[\frac{\partial \log w^M(\theta)}{\partial \theta} = \left(\frac{2Z + Z^2Z^* - Z*}{2 + (Z^*)^2} \right) \left(\frac{Z^*}{\sigma} - \sqrt{T} \right), \]

where

\[Z^* = \frac{\log H - \log S_0 + 0.5\sigma^2T}{\sigma\sqrt{T}}. \]

As we see from figure 9.1, when computing the delta, there is not significant difference between the score functions of the pathwise PP method and the pathwise MPP method. However, for the computation of the vega, the score function for the pathwise MPP method is significantly less sensitive to the outcome of \(Z \) (See figure 9.2). This is not surprising given that the pathwise MPP method always minimises the variance of the score function which in turn reduces the standard deviation of the vega estimator.

For our numerical tests, we first consider a non-financial application of the pathwise partial proxy method and the pathwise minimal partial proxy method. In particular, we compute the sensitivities of \(\mathbb{E}(g(S)) \) where \(S \) is a vector of state variables and \(g(\cdot) \) is a discontinuous function of \(S \). The details of this test are provided in section 9 and we shall call this the barrier-crossing test. We then proceed with more challenging tests where we consider computing the deltas and vegas for digital caplets, digital CMS, target redemption notes with LIBOR floater (LIBOR TARN), and target redemption notes with CMS floater (CMS TARN) and we use the LMM as the benchmark model.

10.1. Barrier-Crossing Test Specifications. For the barrier-crossing test, we assume that there are 5 state variables, \(S(t) = (S_1(t), S_2(t), S_3(t), S_4(t), S_5(t)) \), with the initial state of the system given by \((5, 4, 3, 2, 1) \). All state variables are assumed to follow a Brownian motion process with zero drift. We further assume that all the state variables have a volatility of 50% and they have a correlation of 0.2 between them. We also use a factor-reduced model with the Brownian driver of the state variables reduced to the first 3 factors. Here, we will compute the sensitivities of the expected number of times that the underlying quantities, \(S(t) \), finish above some predetermined hypersurfaces at five different observation times, \(t = 1, 2, 3, 4, 5 \). Specifically, we compute

\[\frac{\partial}{\partial \theta} \mathbb{E} \left(\sum_{t=1}^{5} 1_{\{h(S(t),t) > L_t\}} \right), \]
and we set

\[h(S(t), t) = \sum_{j=1}^{5} c_j(t) S_j(t), \]

\[L_t = 11.5 + t, \]

\[c_j(t) = (0.25 + 0.25j)^t. \]

for \(t = 1, 2, 3, 4, 5 \). In order to prevent pathwise discontinuities, we set \(h(S(t), t) \) to be the proxy constraint function.

10.2. LIBOR Market Model Specifications. For the LIBOR market model, we model semi-annual forward rates with a flat volatility structure of 20% and a tenor structure of

\[t_0 = 0 < t_1 < \ldots < t_{n+1} \]

where \(t_j = 0.5 \times j \). We also assume that the Brownian driver of LMM has a correlation of \(\rho_{ij} = 0.5 + 0.5 \exp(-0.2|t_i - t_j|) \) and reduced to the first 5 factors. Instead of evolving the forward rates directly, the log of the forward rates will be evolved across each tenor date.

10.3. LMM Product Descriptions and Specifications. Here, we provide a brief description of the products used for the numerical tests (For detailed explanations, see Fries (2007b)).

10.3.1. Digital Caplets. A digital caplet will pay 1 if the underlying forward rate and finishes above the strike or zero otherwise. A small perturbation of the forward rate can shift a digital caplet from finishing out-of-money to in-the-money resulting a discontinuous pathwise value.

For our numerical test, we use a 5-year digital caplet with a forward rate resetting on year 5 as the underlying (i.e. \(f_{10}(t_{10}) \)). We assume that this digital caplet has a strike of 10% and the initial LIBOR curve is flat at 10%. As for the proxy constraint function, we will use the log of the forward rate (i.e a linear proxy constraint function) resetting at year 5.

10.3.2. Digital CMS. A digital CMS is exactly the same as a digital caplet except that, instead of using a forward rate, a constant maturity swap-rate (CMS) will be used as the underlying quantity of the contract. For the purpose of our numerical tests, we compute the price sensitivities of a 5-year digital CMS with a 5-year constant maturity swap-rate as the underlying. We further assume that this digital CMS has a strike of 10% and the initial LIBOR curve is flat at 10%. Here, the log of the CMS resetting at year 5 will be used as the proxy constraint function.

10.3.3. LIBOR TARN. A LIBOR TARN has the following features,

- similar to a callable bond,
- pays large initial coupon followed by inverse floating coupons (e.g. \(\max(10\% - 2f_j(t_j), 0) \)) determined by the forward rate on reset. \(^8\)
- will be redeemed once the total coupon paid reaches the target coupon or at maturity whichever is earlier.

\(^8\)For our numerical test, we assume that coupons are determined at the beginning of the reset date and payable at the end of the reset period.
After the initial coupon, subsequent coupons will only be paid if the underlying forward rate is low and no coupon payments will be made if the underlying forward rate is high. Hence, in an upward-sloping forward curve environment, a LIBOR TARN will either be redeemed very early in the life of the contract or at maturity. Small changes to the model inputs can change the timing of redemption and cause pathwise discontinuities.

For our numerical tests, we consider a 5.5-year LIBOR TARN with zero initial coupon and a target coupon of 9%. We further assume that this TARN pays semi-annual inverse floating coupons with a rate of \(\max(10\% - 2f_j(t_j), 0)\). We assume that coupons are determined at the beginning of the reset date and payable at the end of the reset period. Since LIBOR TARNs are known to have strong pay-off discontinuity effects in an upward-sloping interest-rate environment, we assume that the LIBOR forward rates increase linearly from \(f_1 = 2.5\%\) to \(f_{10} = 11.5\%\) so that the probability of early redemption is close to 0.5. As for the proxy constraint function, we will use the log of the forward rate (i.e. a linear proxy constraint function) resetting at each tenor date.

10.3.4. CMS TARN. Similar to the LIBOR TARN, a CMS TARN will have all the same features except that a constant maturity swap-rate (CMS) on each reset date will be used to determine the coupon payments. Therefore, under an upward-sloping interest-rate environment, a small change to model inputs can shift the timing of the redemption results in pathwise discontinuities.

For the purpose of our numerical test, we consider a 5.5-year CMS TARN with zero initial coupon and has a target coupon of 9%. We further assume that this TARN pays semi-annual inverse floating coupons of \(\max(10\% - 2\text{CMS}_j, 0)\) where \(\text{CMS}_j\) is the 5-year constant maturity swap-rate resetting at time \(t_j\). We assume that coupons are determined at the beginning of the reset date and payable at the end of the reset period. Since CMS TARNs are known to have strong pay-off discontinuity effects in an upward-sloping interest rate environment, we assume that the LIBOR forward rates increase linearly from \(f_1 = 1\%\) to \(f_{19} = 10\%\). To prevent pathwise discontinuities, the log of the constant maturity swap rate resetting at each tenor date will be used as the proxy constraint.

11. Numerical Results

In this section, we present numerical results. Deltas and vegas are evaluated using the naive bump and revalue method, the pathwise partial proxy method and the pathwise minimal partial proxy method (pathwise MPP). We do not present results for the partial proxy and minimal partial proxy methods; their standard errors would agree with the pathwise methods (which are their limits) up to a small discretization bias, and their timings would be similar to the bump and revalue method but slightly slower due to the extra computations required. Here, instead of presenting the numerical results for all elementary vegas, we present the price sensitivities with respect to the volatility of each underlying. These can be obtained by summing the weighted elementary vegas

\[
\frac{\partial \text{Price}}{\partial \sigma_j} = \sum_s \sum_i a_{js}(i) \frac{\partial \text{Price}}{\partial a_{js}(i)},
\]

where \(\sigma_j\) is the volatility of the underlying. For cases where the log of a swap-rate (i.e. non-linear proxy constraint) is used as a proxy constraint function, two sets of numerical results will
be presented for the pathwise partial proxy method - using the exact non-linear proxy constraint function (pathwise PP) and using the linearized proxy constraint function (pathwise PP(L)). For the bump and revalue method, deltas and vegas are calculated by applying the finite differences to prices obtained using the based inputs and perturbed inputs. For deltas, the perturbed inputs are obtained by shifting the relevant initial state variables in the barrier-crossing test by 0.01 and initial forward rate in LIBOR market model by 1 basis point, while the perturbed inputs for vegas are obtained by shifting the base volatility by 10 basis points (i.e. \(\sigma_j + 0.1\% \)). Note that, under the bump and revalue method, vegas are calculated directly instead of taking the weighted sum of the elementary vegas. The numerical results are presented in the following order: we first compare the standard errors of deltas and vegas; we then consider the time taken to compute all the deltas and vegas; and lastly, we show that there is no significant bias due to linearizing the proxy constraint function.

11.1. **Standard Errors.** In this section, we compare the standard errors of deltas and vegas calculated using the bump and revalue method, the pathwise partial proxy method and the pathwise minimal partial proxy method. The means and the standard errors of deltas and vegas are calculated using 10,000 batches of simulations, each with 5000 paths and the results are presented in table 11.1, 11.2, 11.3, 11.4 and 11.5.

Overall, deltas and vegas evaluated using the pathwise MPP method have the lowest standard errors followed by the pathwise PP method and the naive bump and revalue method. In particular, the pathwise MPP method performs significantly better than both the pathwise PP method and the naive bump and revalue method when it comes to the computation of vegas. As we can see from the barrier crossing test (see table 11.1), the vegas evaluated using the pathwise MPP method has an average standard error approximately 2.8 times and 9.8 times lower than the pathwise PP method and the naive bump and revalue method respectively. Standard error reductions of similar magnitude for vegas evaluated using the pathwise MPP method can also be observed for the digital caplet, digital CMS, the LIBOR TARN and the CMS TARN. As for deltas, the results vary depending on the tests. For the barrier-crossing test, both the pathwise PP method and the pathwise MPP method give similar standard errors for deltas and they are approximately 5 times lower than the naive bump and revalue approach. Similar results are also observed for the digital caplet, the digital CMS, and the CMS TARN tests. However, for the LIBOR TARN test, the standard errors of deltas evaluated using the pathwise MPP method are significantly lower than the pathwise PP method.

From the numerical results, we can also see that there is no significant differences between using an exact proxy constraint function and a linearized proxy constraint function since both the pathwise PP method and the pathwise PP(L) method give similar means and standard errors. Another interesting observation is that, for the LIBOR TARN and the CMS TARN, the naive bump and revalue method produces stable deltas and vegas for forward rates resetting close to the maturity of the contract (see table 11.3 and 11.5). This is because, as explained earlier, in an upward-sloping interest-rate environment, the LIBOR TARN and the CMS TARN will either be redeemed very early in the life of the contract or at maturity. Pathwise discontinuities are the results
of early redemption, which in turn depends only on forward rates or swap-rates with early reset date. Any forward rate or swap-rate with reset date close to the maturity of the contract will not have a significant impact on the early redemption and hence, bumping and shifting such forward rates will not result in pathwise discontinuities.

11.2. **Timing Consideration.** In this section, we will consider the time taken to compute all deltas and vegas for the barrier crossing test and the benchmark products. Tables 11.6 and table 11.7 show the time required to compute all deltas and both deltas and vegas combined using 2^{16} paths. This numerical test was carried out using a 3.16Ghz Intel Core 2 Duo PC with 4 Gb of RAM, with single threaded C++ code.

Under the naive bump and revalue method, the time taken is directly proportional to the number of deltas and vegas. This is because every price sensitivity has to be evaluated individually. Therefore, the computational time for the naive bump and revalue method is significantly higher than that for the two pathwise methods. Note that we have restricted to only computing one vega per forward rate, in a full application there may well be many more: for example, one might want sensitivities to co-terminal swaption implied volatilities as well as caplets. As we can see from tables 11.6 and 11.7, the time taken to computes all deltas and vegas is similar for the two pathwise methods with a linear (or a linearized) proxy constraint function. For cases where a non-linear proxy constraint function is used, the computational time is slightly higher as expected.

11.3. **Bias due to the Linearization of the Proxy Constraint Functions.** For the digital CMS and the CMS TARN, deltas and vegas calculated using the linearized proxy constraint function may be biased. The minimal partial proxy simulation scheme requires us to linearize, and linearization is desirable for the partial proxy scheme since it reduces the computational order. In order to study the magnitude of the bias, deltas and vegas for the digital CMS and the CMS TARN are evaluated using 2^{27} paths of Sobol random numbers. We compare the deltas and vegas obtained using the pathwise MPP method and the pathwise PP method with linearized proxy constraint function (pathwise PP(L)) against the pathwise PP method using the exact proxy constraint function (pathwise PP). Results obtained from the pathwise PP approach using the exact proxy constraint function are unbiased estimators of deltas and vegas as the condition (4) in Theorem 1 holds with probability of 1. From tables 11.8 and 11.9, we see that the linearization of the proxy constraint function causes no significant biases to the deltas and vegas.

12. **Conclusion**

We have shown that by using a combination of importance sampling and adjoint methods it is possible to regularize the pathwise method for derivatives with discontinuous pay-offs. In particular, we have introduced two new approaches: the pathwise partial proxy method and the pathwise minimal partial proxy method both of which allow the rapid computation of Greeks in a wide range of cases including a TARN in a low-factor LIBOR market model. We have presented numerical results demonstrating that these methods are fast, flexible and powerful. We therefore believe that they will have widespread impact on the trading and risk-management of exotic derivatives.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Pathwise PP</th>
<th>Pathwise MPP</th>
<th>Bump and Revalue</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>13.63% 5.21%</td>
<td>13.60% 0.96%</td>
<td>13.60% 0.96%</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>25.71% 7.23%</td>
<td>25.66% 1.35%</td>
<td>25.67% 1.33%</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>44.80% 9.50%</td>
<td>44.83% 1.71%</td>
<td>44.83% 1.68%</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>75.49% 12.29%</td>
<td>75.64% 2.08%</td>
<td>75.64% 2.07%</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>124.40% 15.92%</td>
<td>124.56% 2.70%</td>
<td>124.56% 2.68%</td>
<td></td>
</tr>
</tbody>
</table>

Table 11.1: Barrier-Crossing Test: Means and standard errors for deltas and vegas evaluated using the bump and revalue approach, the pathwise partial proxy approach (pathwise PP) and the pathwise minimal partial proxy approach (pathwise MPP).
Digital Caplet: Means and standard errors for deltas and vegas evaluated using the naive bump and revalue method, the pathwise partial proxy method with linearized constraint (pathwise PP(L)), the pathwise partial proxy method (pathwise PP) and the pathwise minimal partial proxy method (pathwise MPP).

<table>
<thead>
<tr>
<th>Forward Rates</th>
<th>Delta</th>
<th>Vega</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bump and Revalue</td>
<td>Pathwise PP(L)</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>std error</td>
</tr>
<tr>
<td>f_1</td>
<td>-12.50%</td>
<td>6.60%</td>
</tr>
<tr>
<td>f_2</td>
<td>-12.45%</td>
<td>9.70%</td>
</tr>
<tr>
<td>f_3</td>
<td>-12.43%</td>
<td>11.83%</td>
</tr>
<tr>
<td>f_4</td>
<td>-12.49%</td>
<td>13.30%</td>
</tr>
<tr>
<td>f_5</td>
<td>-12.39%</td>
<td>15.29%</td>
</tr>
<tr>
<td>f_6</td>
<td>-12.38%</td>
<td>16.81%</td>
</tr>
<tr>
<td>f_7</td>
<td>-12.38%</td>
<td>18.27%</td>
</tr>
<tr>
<td>f_8</td>
<td>-12.39%</td>
<td>19.74%</td>
</tr>
<tr>
<td>f_9</td>
<td>-12.41%</td>
<td>21.26%</td>
</tr>
<tr>
<td>f_{10}</td>
<td>51.81%</td>
<td>90.71%</td>
</tr>
<tr>
<td>f_{11}</td>
<td>65.49%</td>
<td>88.78%</td>
</tr>
<tr>
<td>f_{12}</td>
<td>62.21%</td>
<td>86.52%</td>
</tr>
<tr>
<td>f_{13}</td>
<td>59.32%</td>
<td>84.91%</td>
</tr>
<tr>
<td>f_{14}</td>
<td>57.00%</td>
<td>83.27%</td>
</tr>
<tr>
<td>f_{15}</td>
<td>54.63%</td>
<td>81.83%</td>
</tr>
<tr>
<td>f_{16}</td>
<td>52.10%</td>
<td>80.09%</td>
</tr>
<tr>
<td>f_{17}</td>
<td>49.70%</td>
<td>78.14%</td>
</tr>
<tr>
<td>f_{18}</td>
<td>47.04%</td>
<td>76.08%</td>
</tr>
<tr>
<td>f_{19}</td>
<td>44.87%</td>
<td>74.46%</td>
</tr>
</tbody>
</table>

Table 11.2. Digital Caplet: Means and standard errors for deltas and vegas evaluated using the naive bump and revalue approach, the pathwise partial proxy approach (pathwise PP) and the pathwise minimal partial proxy approach (pathwise MPP).
proxy approach (pathwise PP) and the pathwise minimal partial proxy approach (pathwise MPP).

<table>
<thead>
<tr>
<th>Rate</th>
<th>Delta</th>
<th>Vega</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bump and Revalue</td>
<td>Pathwise PP(L)</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Barrier-Crossing</td>
<td>0.58</td>
<td>n/a</td>
</tr>
<tr>
<td>Digital Caplet</td>
<td>9.65</td>
<td>n/a</td>
</tr>
<tr>
<td>Digital CMS</td>
<td>42.28</td>
<td>5.02</td>
</tr>
<tr>
<td>LIBOR TARN</td>
<td>7.03</td>
<td>n/a</td>
</tr>
<tr>
<td>CMS TARN</td>
<td>30.92</td>
<td>5.05</td>
</tr>
</tbody>
</table>

Table 11.6. Time (in second) taken to compute all deltas using 2^{16} paths.

<table>
<thead>
<tr>
<th></th>
<th>Bump and Revalue</th>
<th>Pathwise PP(L)</th>
<th>Pathwise PP</th>
<th>Pathwise MPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrier-Crossing</td>
<td>1.06</td>
<td>n/a</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>Digital Caplet</td>
<td>18.42</td>
<td>n/a</td>
<td>4.31</td>
<td>4.37</td>
</tr>
<tr>
<td>Digital CMS</td>
<td>82.45</td>
<td>8.94</td>
<td>10.33</td>
<td>9.07</td>
</tr>
<tr>
<td>LIBOR TARN</td>
<td>13.42</td>
<td>n/a</td>
<td>3.28</td>
<td>3.57</td>
</tr>
<tr>
<td>CMS TARN</td>
<td>60.29</td>
<td>7.90</td>
<td>10.72</td>
<td>8.25</td>
</tr>
</tbody>
</table>

Table 11.7. Time (in second) taken to compute both deltas and vegas combined using 2^{16} paths.

<table>
<thead>
<tr>
<th>Forward Rates</th>
<th>Pathwise PP(L)</th>
<th>Pathwise PP</th>
<th>Pathwise MPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>-12.517%</td>
<td>0.003%</td>
<td>-12.517%</td>
</tr>
<tr>
<td>f_2</td>
<td>-12.514%</td>
<td>0.006%</td>
<td>-12.514%</td>
</tr>
<tr>
<td>f_3</td>
<td>-12.511%</td>
<td>0.009%</td>
<td>-12.511%</td>
</tr>
<tr>
<td>f_4</td>
<td>-12.508%</td>
<td>0.012%</td>
<td>-12.508%</td>
</tr>
<tr>
<td>f_5</td>
<td>-12.505%</td>
<td>0.016%</td>
<td>-12.505%</td>
</tr>
<tr>
<td>f_6</td>
<td>-12.501%</td>
<td>0.019%</td>
<td>-12.502%</td>
</tr>
<tr>
<td>f_7</td>
<td>-12.498%</td>
<td>0.022%</td>
<td>-12.498%</td>
</tr>
<tr>
<td>f_8</td>
<td>-12.495%</td>
<td>0.026%</td>
<td>-12.495%</td>
</tr>
<tr>
<td>f_9</td>
<td>-12.492%</td>
<td>0.029%</td>
<td>-12.493%</td>
</tr>
<tr>
<td>f_{10}</td>
<td>52.041%</td>
<td>-3.770%</td>
<td>51.983%</td>
</tr>
<tr>
<td>f_{11}</td>
<td>65.669%</td>
<td>-1.617%</td>
<td>65.636%</td>
</tr>
<tr>
<td>f_{12}</td>
<td>62.664%</td>
<td>-1.584%</td>
<td>62.651%</td>
</tr>
<tr>
<td>f_{13}</td>
<td>59.805%</td>
<td>-1.500%</td>
<td>59.810%</td>
</tr>
<tr>
<td>f_{14}</td>
<td>57.083%</td>
<td>-1.370%</td>
<td>57.100%</td>
</tr>
<tr>
<td>f_{15}</td>
<td>54.800%</td>
<td>-1.220%</td>
<td>54.504%</td>
</tr>
<tr>
<td>f_{16}</td>
<td>51.985%</td>
<td>-1.066%</td>
<td>52.012%</td>
</tr>
<tr>
<td>f_{17}</td>
<td>49.596%</td>
<td>-0.906%</td>
<td>49.621%</td>
</tr>
<tr>
<td>f_{18}</td>
<td>47.312%</td>
<td>-0.717%</td>
<td>47.329%</td>
</tr>
<tr>
<td>f_{19}</td>
<td>45.114%</td>
<td>-0.563%</td>
<td>45.117%</td>
</tr>
</tbody>
</table>

Table 11.8. Digital CMS: Deltas and vegas evaluated using 2^{27} paths. The unbiased estimators for deltas and vegas are given by the pathwise partial proxy approach using the exact proxy constraint function (pathwise PP).

References

Table 11.9. CMS TARN: Deltas and vegas evaluated using 2^7 paths. The unbiased estimators for
deltas and vegas are given by the pathwise partial proxy approach using the exact proxy constraint function
(pathwise PP).

<table>
<thead>
<tr>
<th>Forward Rates</th>
<th>Pathwise PP(L)</th>
<th>Pathwise PP</th>
<th>Pathwise MPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>-64.873% 0.022%</td>
<td>-64.878% 0.021%</td>
<td>-64.873% 0.021%</td>
</tr>
<tr>
<td>f_2</td>
<td>-83.150% 0.087%</td>
<td>-83.160% 0.088%</td>
<td>-83.151% 0.088%</td>
</tr>
<tr>
<td>f_3</td>
<td>-97.228% 0.076%</td>
<td>-97.282% 0.080%</td>
<td>-97.271% 0.080%</td>
</tr>
<tr>
<td>f_4</td>
<td>-92.946% -0.161%</td>
<td>-92.988% -0.157%</td>
<td>-92.988% -0.156%</td>
</tr>
<tr>
<td>f_5</td>
<td>-90.969% -0.231%</td>
<td>-91.011% -0.228%</td>
<td>-90.999% -0.228%</td>
</tr>
<tr>
<td>f_6</td>
<td>-89.689% -0.274%</td>
<td>-89.719% -0.271%</td>
<td>-89.706% -0.270%</td>
</tr>
<tr>
<td>f_7</td>
<td>-88.309% -0.315%</td>
<td>-88.327% -0.313%</td>
<td>-88.318% -0.312%</td>
</tr>
<tr>
<td>f_8</td>
<td>-86.837% -0.362%</td>
<td>-86.844% -0.361%</td>
<td>-86.834% -0.360%</td>
</tr>
<tr>
<td>f_9</td>
<td>-85.307% -0.418%</td>
<td>-85.296% -0.416%</td>
<td>-85.284% -0.416%</td>
</tr>
<tr>
<td>f_{10}</td>
<td>-83.749% -0.484%</td>
<td>-83.711% -0.481%</td>
<td>-83.700% -0.481%</td>
</tr>
<tr>
<td>f_{11}</td>
<td>-45.205% 0.700%</td>
<td>-45.134% 0.702%</td>
<td>-45.127% 0.703%</td>
</tr>
<tr>
<td>f_{12}</td>
<td>-28.130% 0.543%</td>
<td>-28.062% 0.547%</td>
<td>-28.058% 0.547%</td>
</tr>
<tr>
<td>f_{13}</td>
<td>-12.673% 0.471%</td>
<td>-12.696% 0.474%</td>
<td>-12.694% 0.474%</td>
</tr>
<tr>
<td>f_{14}</td>
<td>-4.398% 0.347%</td>
<td>-4.424% 0.349%</td>
<td>-4.421% 0.349%</td>
</tr>
<tr>
<td>f_{15}</td>
<td>-1.641% 0.205%</td>
<td>-1.655% 0.206%</td>
<td>-1.654% 0.206%</td>
</tr>
<tr>
<td>f_{16}</td>
<td>-0.644% 0.109%</td>
<td>-0.651% 0.110%</td>
<td>-0.650% 0.110%</td>
</tr>
<tr>
<td>f_{17}</td>
<td>-0.235% 0.050%</td>
<td>-0.239% 0.051%</td>
<td>-0.237% 0.050%</td>
</tr>
<tr>
<td>f_{18}</td>
<td>-0.061% 0.016%</td>
<td>-0.062% 0.016%</td>
<td>-0.061% 0.015%</td>
</tr>
<tr>
<td>f_{19}</td>
<td>0.001% 0.000%</td>
<td>0.001% 0.000%</td>
<td>0.000% 0.000%</td>
</tr>
</tbody>
</table>

CENTRE FOR ACTUARIAL STUDIES, DEPARTMENT OF ECONOMICS, UNIVERSITY OF MELBOURNE, VICTORIA 3010, AUSTRALIA

E-mail address: j.chan23@pgrad.unimelb.edu.au
E-mail address: mark@markjoshi.com